
Towards Reliable, Stable and Fast Learning 
for Smart Home Activity Recognition

Rebeen Ali Hamad

L I C E N T I A T E  T H E S I S  |  Halmstad University Dissertations no. 85

Supervisors:  
Thorsteinn Rögnvaldsson
Mohamed-Rafik Bouguelia
Eric Järpe
Jens Lundström



Towards Reliable, Stable and Fast Learning for Smart Home Activity Recognition
© Rebeen Ali Hamad
Halmstad University Dissertations no. 85 
ISBN 978-91-88749-79-6 (printed)
ISBN 978-91-88749-80-2 (pdf)
Publisher: Halmstad University Press, 2022 | www.hh.se/hup
Printer: Media-Tryck, Lund



Towards Reliable, Stable and Fast Learning for Smart
Home Activity Recognition





Abstract

The current population age grows increasingly in industrialized societies and calls for
more intelligent tools to monitor human activities. The aims of these intelligent tools
are often to support senior people in their homes, to keep track of their daily activities,
and to early detect potential health problems to facilitate a long and independent
life. The recent advancements of smart environments using miniaturized sensors and
wireless communications have facilitated unobtrusively human activity recognition.

Human activity recognition has been an active field of research due to its broad
applications in different areas such as healthcare and smart home monitoring. This
thesis project develops work on machine learning systems to improve the understand-
ing of human activity patterns in smart home environments. One of the contributions
of this research is to process and share information across multiple smart homes to
reduce the learning time, reduce the need and effort to recollect the training data, as
well as increase the accuracy for applications such as activity recognition. To achieve
that, several contributions are presented to pave the way to transfer knowledge among
smart homes that includes the following studies. Firstly, a method to align manifolds
is proposed to facilitate transfer learning. Secondly, we propose a method to further
improve the performance of activity recognition over the existing methods. Moreover,
we explore imbalanced class problems in human activity recognition and propose a
method to handle imbalanced human activities. The summary of these studies are
provided below.

In our work, it is hypothesized that aligning learned low-dimensional manifolds
from disparate datasets could be used to transfer knowledge between different but
related datasets. The t-distributed Stochastic Neighbor Embedding(t-SNE) is used to
project the high-dimensional input dataset into low-dimensional manifolds. However,
since t-SNE is a stochastic algorithm and there is a large variance of t-SNE maps, a
thorough analysis of the stability is required before applying Transfer learning. In
response to this, an extension to Local Procrustes Analysis called Normalized Local
Procrustes Analysis (NLPA) is proposed to non-linearly align manifolds by using lo-
cally linear mappings to test the stability of t-SNE low-dimensional manifolds. Exper-
iments show that the disparity from using NLPA to align low-dimensional manifolds
decreases by order of magnitude compared to the disparity obtained by Procrustes
Analysis (PA). NLPA outperforms PA and provides much better alignments for the

5

kattra
Highlight

kattra
Highlight



6

low-dimensional manifolds. This indicates that t-SNE low-dimensional manifolds are
locally stable, which is the part of the contribution in this thesis.

Human activity recognition in smart homes shows satisfying recognition results
using existing methods. Often these methods process sensor readings that precede
the evaluation time (where the decision is made) to evaluate and deliver real-time
human activity recognition. However, there are several critical situations, such as di-
agnosing people with dementia where "preceding sensor activations" are not always
sufficient to accurately recognize the resident’s daily activities in each evaluated time.
To improve performance, we propose a method that delays the recognition process to
include some sensor activations that occur after the point in time where the decision
needs to be made. For this, the proposed method uses multiple incremental fuzzy
temporal windows to extract features from both preceding and some oncoming sen-
sor activations. The proposed method is evaluated with two temporal deep learning
models: one-dimensional convolutional neural network (1D CNN) and long short-
term memory (LSTM) on a binary sensor dataset of real daily living activities. The
experimental evaluation shows that the proposed method achieves significantly better
results than the previous state-of-the-art.

Further, one of the main problems of activity recognition in a smart home setting
is that the frequency and duration of human activities are intrinsically imbalanced.
The huge difference in the number of observations for the categories means that many
machine learning algorithms focus on the classification of the majority examples due
to their increased prior probability while ignoring or misclassifying minority exam-
ples. This thesis explores well-known class imbalance approaches (synthetic minority
over-sampling technique, cost-sensitive learning and ensemble learning) applied to
activity recognition data with two temporal data pre-processing for the deep learning
models LSTM and 1D CNN. This thesis proposes a data level perspective combined
with a temporal window technique to handle imbalanced human activities from smart
homes in order to make the learning algorithms more sensitive to the minority class.
The experimental results indicate that handling imbalanced human activities from the
data-level outperforms algorithm level and improved the classification performance.
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Chapter 1
Introduction

Activity Recognition (AR) is a challenging and highly dynamic research field aiming
at recognizing human activities based on sensor observation data [4]. AR is funda-
mental for different application including smart homes [5], healthcare [6] and surveil-
lance [7]. AR systems can be used to continuously and remotely monitor the physical
human activities of a resident to alleviate the caregiver’s burden and to reduce the eco-
nomic pressures of families [8]. Hence, AR systems can help caregivers to monitor
movements of residents in their own homes and send alerts to the caregiver whenever
abnormal activities occur that may cause physical damage to the residents [9].

1.1 Context and motivation
The aging and dependent population have been recognized as a major social and
economic challenge for the coming decades. According to the World Health Organi-
zation (WHO), the population of elderly people has increased drastically in the past
decades, and estimated that there will be nearly two billion people aged 60 and older
by 2050 [10]. In Europe, it is estimated that the elderly population above 65 years of
age will rise to nearly 30% in 2060 [11]. Elders who are dependent and vulnerable
in several perspectives due to physical and cognitive impairment require assistance in
their activities of daily living (ADLs) [12]. ADLs are the normal daily activities that
we perform for self-care such as eating, drinking, and bathing [13]. The increase of
the elderly population and the rising cost of healthcare may bring a major issue and
stress to the society [14]. One of the promising solutions to this challenge is ambient
assisted living (AAL) systems. Such systems aim to reduce the costs of healthcare and
would enable elders to live independently in their home [15]. AAL system consists
of sensors, actuation, and networking technology, and data processing techniques to
assist elderly people with their daily physical activities to help them stay safe and
healthy while living independently. One of the most important roles and components
of the AAL system is Activity Recognition (AR). AR is an active and challenging
research field using sensors and artificial intelligence (AI) methods that can stimulate
different applications such as healthcare monitoring, resident situation assessment,
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2 CHAPTER 1. INTRODUCTION

and behaviour pattern recognition in pro-active home care [9, 15, 16, 17]. Moreover,
AR systems can support or even replace human operators to improve the performance
and effectiveness of the observation and analysis process. For instance, an AR system
can keep track of the health condition of older adults and inform the health staff in
urgent cases [18, 19, 20]. Hence, AR could be used to perform recognition of danger-
ous situations and detects deviations of behavior to improve elderly-care alert systems
[21].

The improvement in sensor technology and wireless communication networks
regarding cost efficiency, capacity increase, and power efficiency made them feasible
for AR [22]. Since these miniaturized sensors have been deployed in smart home
environments, a vast amount of data has been produced. While the data supply is
increased, the demand for methods to process and extract useful information from
such a huge amount of data in a reasonable amount of time is also increased. To meet
this demand, data-driven methods that are easily applicable to novel settings have
been used. Moreover, to infer human activities, machine learning methods have been
used on the recorded data from smart homes, however, these methods need labeled
data to be trained on. Labeling recorded data is expensive since it requires time and
human effort. Although the labeled data is essential, it is rarely useful when recorded
in laboratory settings following predefined scenarios since the recorded data does not
reflect the normal human activity [23].

1.2 Challenges of activity recognition
The AR of daily physical activities from smart home environment data is a challeng-
ing field. There exist several practical limitations regarding the layout of the smart
home environment such as the number, location, and type of sensors. In addition to
these obvious limitations, several additional issues immediately affect the success of
human AR systems. Factors that contribute to the complexity of the AR task can be
categorized into the following types.

1.2.1 Labeling sensor readings
A particular difficulty for employing machine learning techniques is to label a sub-
stantial amount of sensor readings in each smart home for training a model [24]. Prop-
erly labeling a large number of sensor readings for their correct corresponding human
activities needs a domain knowledge expert and is an extremely time-consuming pro-
cess [25, 26]. Mainly, AR systems are profoundly developed to model a single smart
home data. Moreover, such systems rely on the assumption that the distribution of
the training data and testing data are the same [27]. However, this assumption is sel-
domly valid in real-world applications. Hence, developing a technique to reduce the
need for labeled data and share knowledge across different but related smart homes to
further increase the accuracy for AR systems is demanding and will be an important
contribution.
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1.2. CHALLENGES OF ACTIVITY RECOGNITION 3

1.2.2 Real-time constraints
Real-time systems play a vital role in various applications such as credit card fraud de-
tection [28] to business analytics[29], and healthcare monitoring [30]. Machine learn-
ing can continuously support learning applications by updating the system’s learning
model whenever new data is fed to the system. Hence, real-time learning system has
become more demanding particularly in surveillance and healthcare system. Assess-
ing a patient’s health in real-time could lead to enhanced diagnoses and treatment.
Moreover, in surveillance systems, real-time detection enables humans to respond to
abnormal behavior immediately. Several abnormal activities, including illegal park-
ing, traffic rule-breaking, shooting in public places can be detected by a real-time
intelligent surveillance system. A real-time system can be used to detect fire, to pre-
vent terrorism and theft at public places by generating an alarm automatically [31].

Real-time AR that demands to recognize activities in a real-time manner has the
following challenges. Firstly, the real-time application often needs one-pass algo-
rithms to process input data streams with a short real-time delay. Secondly, to keep
performance high as an essential demand for real-time systems, a minimum number
of features are needed. However, often numerous mutual exclusive training features
are required to enhance the prediction accuracy of a system.

Real-time AR systems could be used by family members or caregivers to monitor
the activities of elderly people or people with Alzheimer to assist them when it is
needed. Existing approaches for AR in smart homes perform predictions in real-time
based on sensor activations that precede the evaluation time. Due to only relying on
previous activations, such real-time approaches may lack precision in recognizing
some daily life activities [30]. To overcome this problem, it becomes necessary to
know which sensor activations are generated later since the activity to be recognized
will depend on the subsequent sensors.

1.2.3 Diversity and frequency of human activity
Accurately modeling human activities is difficult due to the complex and varying
nature of human activities [32]. The diversity in human activities regarding duration,
interactions with the smart home environment and the differences in the order of the
activities of different elderly will make the problem even more complicated [33]. For
instance, an activity like preparing breakfast consists of many actions such as turning
on the coffee maker, turning on the toaster and getting cheese out of the fridge. The
order of these actions may vary for different occasions of the same activity or some
of the steps may completely disappear.

Not only are human activities highly diverse in the form of different sensor ac-
tivations but the frequency of activities themselves are inherently imbalanced and
hence accurate AR is challenging from a machine learning perspective [34]. Large
differences in the number of examples for the classes to learn can make the machine
learning algorithm emphasize learning majority classes and thereby partially or com-
pletely ignore minority classes [25]. As an example, cooking may occur with a higher
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frequency than grooming. Another more prominent example is the vast difference be-
tween the total samples of eating and sleeping activities. The latter occurs with a
much higher frequency in data sets collected over a long duration.

1.2.4 Number of activities
A large number and different activities are performed in the daily routine. Hence,
AR systems from smart homes should be able to recognize a different and large set
of human activities [35]. However, recognizing a small set of daily life activities by
AR systems is normally more straightforward than recognizing a large set of human
activities. The reason for this could be attributed to the fact that as the number of hu-
man activities increases, the classifier has to discriminate among a larger set of human
activities, which may add further difficulty for the classifier to correctly distinguish
among activities [25].

1.2.5 Types of activities
Activities which are highly similar such as snack with lunch, dinner or breakfast are
very hard to discriminate as they overlap significantly in the feature space. However,
these kitchen activities are very different from bedroom activities such as sleeping
and living-room activity such as spare time -tv [22]. Furthermore, recognizing a large
number of human activities having both very similar and different characteristics at
the same time from smart home environments makes the recognition problem even
harder by AR systems. Moreover, discriminating overlapped activities is also a chal-
lenging task for an AR system [32]. For instance, while a person is preparing lunch in
the kitchen the phone rings, the person will stop cooking for a while until the person
finishes the call. Performing more than one activity at the same time by a resident in
a smart home such as watching TV and preparing a snack is another problem of AR
systems.

1.2.6 Sensor challenges
Sensors are fundamental components of a smart home environment to make critical
infrastructure monitoring human behavior systems. Sensors play a crucial role in sup-
porting the reliability of continuous activity monitoring and the safety of the smart
home system. However, in smart homes, variability in sensor characteristics is one
of the practical challenges of implementing AR due to external and internal factors
of sensors. External factors that can create variability in sensors may include loose
straps or changes in the operating temperature, while internal factors comprise sen-
sor drift, hardware errors, or complete sensor failures [25]. A failure in one of the
sensors in a smart home can cause misleading results of AR and downgrading the
performance of a smart home system [36]. In a remote healthcare monitoring system,
this could make dramatic consequences on the health of the resident. Moreover, the
power supply of sensors is a bottleneck, which is a problem in demanding long-term
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and continuous monitoring of residential behaviors. Therefore the activation of sen-
sors in a smart home environment influences the sensor power consumption (battery
lifetime) which is a problem. Replacing batteries on devices and sensors is a nontriv-
ial task since sensors are often embedded into the objects of the smart home such as
bed, and door frames [37].

1.3 Research question and summary of contributions
Considering the above challenges of human AR within smart home environments,
this thesis addresses the following research questions.

i. How stable are low-dimensional maps of human activities in a smart home?

ii. How AR could be improved at the expense of real-time recognition?

iii. How to handle imbalanced class problems in the context of AR?

These research questions were investigated and relevant contributions were made
in the following sections and papers :

1.3.1 Paper 1: Stability analysis of the t-SNE algorithm for
human activity pattern data

The t-distributed Stochastic Neighbor Embedding (t-SNE) mapping stability of hu-
man activity patterns in smart homes via the analysis of the reproducibility of low-
dimensional manifolds is investigated. Importantly, we propose an extension of the
Local Procrustes Analysis (LPA) technique to non-linearly align manifolds by us-
ing locally linear mappings which we called Normalized Local Procrustes Analysis
(NLPA). Experiments show that our proposed technique offers a much better result
compared to Procrustes Analysis. Stability investigation is a key step towards trans-
ferring knowledge across similar domains. Results from this work were presented and
published at The 2018 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC2018). This paper is in Appendix A.

I contributed to the study design, implemented the proposed method (NLPA),
performed the experiments, and wrote the majority of the manuscript.

1.3.2 Paper 2: Efficient activity recognition in smart homes
using delayed fuzzy temporal windows on binary sensors

Existing AR systems in smart homes have obtained encouraging results. Commonly
these systems evaluate real-time recognition of human activities using only sensor ac-
tivations that precede the evaluation time (where the decision is made). However, in
many situations, such as diagnosing people with dementia. To improve performance,
we propose a method that would delay the recognition process to include some sen-
sor activations that occur after the point in time where the decision needs to be made.
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For this, the proposed method uses multiple incremental fuzzy temporal windows
to extract features from both preceding and oncoming sensor activations. The pro-
posed method is evaluated with two temporal deep learning models: Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM), on a binary sensor
dataset of real daily living activities. The experimental evaluation shows that the pro-
posed method achieves significantly better results than the real-time approach and that
the representation with fuzzy temporal windows enhances performance within Deep
Learning models. This paper is published in the Journal of Biomedical and Health
Informatics. This paper is in Appendix B.

I contributed to the conceptualization, design, and formulation, implemented the
proposed approach using the two temporal models (LSTM and CNN). I performed
the experiments and wrote the majority of the manuscript.

1.3.3 Paper 3: Efficacy of imbalanced data handling methods on
deep learning for smart homes environments

This paper focuses on investigating the particularly problematic aspect of learning im-
balanced activities. Human activity data sets are typically highly imbalanced because
certain activities occur more frequently than others. Consequently, it is challenging
to train classifiers from imbalanced human activity data sets. With the spread of deep
learning methods in recent years, numerous deep learning-based recognition methods
are also being explored to improve classification performance. Deep learning algo-
rithms perform well on balanced data sets, yet their performance is not satisfactory
on imbalanced data sets. Therefore, we aim to address the problem of class imbalance
in deep learning for smart home data. We assess it with ADL recognition using binary
sensors data set. This paper proposes a data level perspective, combined with a tem-
poral window technique, to handle imbalanced human activities from smart homes to
make the learning algorithms more sensitive to the minority class. The experimental
results indicate that handling imbalanced human activities from the data level outper-
forms the algorithm level and improved the classification performance. This paper is
published in the SN Computer Science Journal. This paper is in Appendix C.

I contributed to the conceptualization, design, and formulation, performed the
experiments, and wrote the majority of the manuscript.

1.3.4 Potential questions for future research
How to transfer knowledge between smart homes with a different layout, sensor
setting, and resident ? The aim of this research question is to exploit what has been
learned in one smart home to improve generalization in different but related smart
homes to reduce the need for labeling data.



Chapter 2
Survey of Human Activity
Recognition Research

2.1 Motivation
To enhance the performance of AR systems and enable its wide applications including
healthcare, smart home monitoring, and surveillance in real-world scenarios, differ-
ent sensing technologies have been explored to conduct considerable research and
proposing several approaches to model and recognize human activities. In the liter-
ature, pervasive computing technologies have been exploited to propose numerous
approaches to devise effective AR systems. AR is a key component of smart home
technology that makes independent living as a viable solution for people, and thus
enhances and maintains the quality of life and care. In this chapter, AR based on a
smart home setting is comprehensively reviewed. As opposed to AR based on smart
home, AR based on Wearable sensors briefly reviewed. Therefore, the review is clas-
sified into AR based on smart environment and wearable sensors as shown in figure
2.1.

Smart Environment 

Human Activity Recognition 

Wearable Sensors 

Figure 2.1: Taxonomy of Human Activity Recognition System
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2.2 Wearable Sensors based Human Activity
Recognition

The small-sized sensors that can be worn on the human body are referred to as wear-
able sensors. These types of sensors are mainly embedded in mobile devices, clothes,
belts, wristwatches, glasses, or shoes to provide a continuous stream of information
and to make them more comfortable to wear. Wearable sensors are used by people
to generate more information about their interaction with their physical surround-
ings, motion, posture, and location. Wearable sensors including accelerometer, gy-
roscope, GPS, and RFID-readers (used together with RFID tags) have been used
to collect information about users’ movement e.g. walking, running, and sleeping.
[38, 39, 40, 15].

With the rapid development of communication, design, and increasing process of
the mobile devices, most of smartphones with embedded built-in sensors ( accelerom-
eters, GPS, and gyroscopes ) can be used to recognize daily physical activities since
they do not need any further equipment to collect and process data. However, solu-
tions based on wearable sensors are not convenient and comfortable for users, and the
success of the methods relies on users’ involvement (e.g., wearing battery-powered
sensors) [41]. In addition to the adversity or disaffection of wearing wearable sensors
by people, there is no guarantee that the wearable devices such as bracelet sensors
are continually worn. Commonly these devices are not very practical in real-world
situations (e.g., elderly people may forget to wear the sensors or may not be able to
wear the sensors ). Moreover, AR systems based on wearable sensors are not well
suited to recognize or distinguish a part of the daily activities that are characterized
by the interaction of the user with several objects (e.g., sitting in the bathroom or the
living room, sleeping in the bedroom or the living room ).

Smartphones as part of the wearable sensors have emerged and have been widely
used for human activity recognition with an increasing trend over the past few years
[42, 43, 44]. Instead of attaching extra sensors on individuals, it is more practical to
exploit the already embedded sensors from smartphones which we often carry around.
Besides, smartphone devices can be placed on several parts of the human body, rang-
ing from the lower such as leg or ankle to arm or wrist in the upper. Also, they are
suitable for both outdoor and indoor settings. Furthermore, users can use more than
one smartphone to record daily physical activities [45]. Smartphones contain different
built-in sensing units such as accelerometers, gyroscopes, cameras, Global Position-
ing System (GPS) sensors. Among the sensors on a smartphone, the accelerometers
are most often used for AR purposes. Mainly, smartphone devices have been em-
ployed in AR for sportive activities such as soccer, bicycling, nordic walking, rowing,
and daily activities such as going to work. Besides, smartphone devices were used for
detecting emergency and dangerous situations such as falls.

Recording activities-related raw data using these sensors has allowed researchers
to use smartphones as an alternative and economic way for human AR [46]. How-
ever, orientation is one of the major problems of AR based on smartphones. Since
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smartphones can be carried by users in different positions such as in the bag or the
pocket or their hands, accurate and robust AR becomes challenging even for simple
activities such as walking.

These sensors can be classified into inertial (e.g. Accelerometers and Gyroscopes)
and vital signs sensors (e.g. Bio-sensors) [47, 11]. Wearable inertial sensors are able
to provide useful information about the user’s movement and body posture. Vital sig-
nals that can be obtained from wearable bio-sensors such as skin temperature, heart
rate, blood oxygen level, blood pressure play a crucial role in monitoring elderly peo-
ple’s health condition. Most of the commonly used wearable sensors that have been
used for monitoring ambulatory activities and vital signs will be further discussed and
summarized below.

2.2.1 Inertial Sensors
The most common inertial sensors that have been used for ambulatory activity moni-
toring are accelerometers that can be used to measure the value of acceleration along
an axis. Accelerometers have been used for monitoring activities associated with body
motion such as sitting, walking, walking downstairs and upstairs, standing, and doing
exercise [48]. Accelerometers have been used for various purposes including detec-
tion of fall [49, 50], analysis of body motion and movement [51, 50, 52], early di-
agnosis of people with Parkinson’s disease [53], and individual’s postural orientation
[54, 55, 56].

Accelerometers provide four attributes: time and acceleration along three axes.
These attributes can present information to show human movement responding to
tilt and frequency, which is important to assess the posture. Accelerometers can be
embedded into belts wrist bands, bracelets, and watches due to their small size to
monitor human activities. Accelerometers can send data wirelessly to mobile com-
puting devices. From the collected data, it is possible to infer a context that can be
used to monitor human activities for a long time and also detect an emergency such
as fall detection [48, 57, 58, 59].

Accelerometers can be placed on the different parts of the human body to rep-
resent most human motions and obtain optimal performance of the human activity
monitoring system [60]. Commonly wearable sensors are placed on waist [61], ster-
num [62] and lower back [63]. Figure 2.2 [1] shows different places of the human
body that can wear sensors. Moreover, Table 2.1 shows recent studies about different
placement of accelerometers.
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Figure 2.2: Graphical illustration of wearable sensor placement [1].

Table 2.1: Accelerometer placements on human body for activity monitoring

Reference

N
o.

A
cc

el
er

om
et

er
s

Placements Activities

Gjoreski and Gams,
2011 [64] 7 Chest, left thigh,right

ankle
Standing,sitting,lying,goingdown,standing
up,sitting on the ground, on all fours

Jiang et al., 2011 [65] 4
Left forearm, right
forearm, left shank
and right shank

Standing straight, sitting on a chair,lying on
a bed, walking, jogging, cycling, walking on
an elliptical machine, running on an elliptical
machine, rowing and weight lifting

Jennifer et al., 2011
[66] 1 Smartphone Walking, jogging, upstairs, downstairs,

standing, sitting
Chun and Weihua,
2011 [67] 1 Right thigh Sitting, standing, lying, walking, sit-to-stand,

stand-to-sit, lie-to-sit, sit-to-lie
Siirtola and Roning,
2012 [68] 1 Smartphone placed in

trousers’ front pocket
Walking, cycling, sitting, standing, driving a
car

Sweetlin 2013 [69] 1 Chest Standing, walking, sitting, lying, fall
Mannini et al., 2013
[70] 1 Wrist/ankle 26 daily activities

Zheng 2008[71] 1 Wrist/hip/waist
pocket

Lying, sitting, standing, walking, running,
dancing, jogging, upstairs, downstairs, skip-
ping

Lei et al., 2014[1] 4 Chest, left under-arm,
waist and thigh

Lying, sitting, standing, flat walking and up
and downstairs, lie-to-stand, stand-to-lie, sit-
to-stand, stand-to-sit
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2.3 Smart Home Based Human Activity Recognition
A smart environment is more suitable than wearable sensors for human AR when
privacy and user acceptance are concerned due to its non-intrusive and non-wearable
nature [72, 73]. A smart environment is designed to provide ambient assisted living
(AAL) and can be used to detect multi-resident activities [22]. Smart environments
are equipped with sensors that unobtrusively monitor and detect resident’s interaction
with objects.

During the past decades, the demand for using smart home setting technology
to record and monitor human activities of elderly people has increased due to the
potential supports that smart homes can provide to people [74]. Furthermore, the in-
terest to support and assist elderly people over the age of 65 using smart homes is
due to the predicted increase of 25% of the population by 2050 in the whole world.
Besides, elderly people have been facing healthcare and social trend crises due to
the prevalence of insufficient physical activity, cognitive decline, and sensory defi-
ciency among them [75]. Healthcare and social resources are overstretched by these
conditions which increase resource needs and investment. Therefore, It has become
necessary for the healthcare systems to face the demographic changes of the elderly
people to adapt and enable them to live in the best possible conditions [74]. Since the
mobility and efficiency in the daily life of elderly people have typically decreased, the
provision of care and assistance must be tailored based on elderly people’s require-
ments and personalized to the individual. In addition to this, older adults may need
frequent, urgent medical and care intervention to avoid fatal consequences [11]. Such
emergencies could be alleviated by monitoring the physical activities of older adults
in a continuous fashion. In many emergency cases, elderly people may require very
expensive in-patient care if the hospital stay is prolonged, which may result in a seri-
ous financial burden on the patient [76]. New contributions to community healthcare
and social care services are demanded since the requirement of having new models
for healthcare and social delivery with affordable costs has increased. Recently, re-
motely monitoring health in a smart environment setting as one of the solutions has
enabled the elderly to stay in their comfortable homes rather than in hospitals [77].
Figure 2.3 shows an example of a smart home equipped with many sensors.

Smart home environments are designed for intelligent service and to facilitate
remote monitoring of residents. Smart homes have several key aspects. The hetero-
geneous devices can communicate in the network, manage and control the systems,
sensors, and actuators that record information based on the interaction of the resi-
dents and objects. Consequently, due to the mentioned capabilities, human activity
recognition has been studied based on smart home data for human activity recogni-
tion. Many smart home environment projects have been established in research labs
that are listed and described in 2.3.1.

kattra
Highlight
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Figure 2.3: An example of smart homes [2].

2.3.1 Smart Home Projects
This section reviews the most notable smart home projects. The projects have been
used to develop and evaluate technology that can be used to enhance assisted liv-
ing for elderly people. Chronological order is determined for this presentation to
provide a more transparent view of how the expectations and research issues asso-
ciated with smart homes have evolved with time. At the beginning of opening these
smart home projects, the main addressed problems were associated with the logical
and physical connectivity of the sensors. Later the smart home projects evolved to
multidisciplinary approaches particularly focusing on enhancing the usability of the
interaction of sensor devices with the residents. The form of interaction from these
smart homes demands technologies such as Artificial Intelligence (AI) that has a high
grade of abstraction and encouraged the evolution to become more natural interaction
approaches. Moreover, the technology of AI from these smart home projects enable
independent living. A summary of the broadly reusable datasets obtained by the dif-
ferent smart home projects is also presented to make selecting between them easier
for researchers.

• Halmstad Intelligent Home (HINT) [78] is a sensor-equipped home environ-
ment able to capture occupancy, movement, and interactions at the Halmstad
University. HINT is a one-bedroom fully functional apartment of 50 m2 con-
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Figure 2.4: Halmstad Intelligent Home (HINT)

structed to give researchers, students and industrial partners with a technology-
equipped realistic home environment. The layout of the HINT is shown in fig-
ure 2.4 and HINT facilitate experiments and studies within the areas of intelli-
gent environments, Ambient Assisted Living (AAL), and social robots. More-
over, HINT is expected also to facilitate longitudinal studies by allowing resi-
dents to stay in the apartment for an extended period of time.

• GatorTech is a smart home project [3] built at the University of Florida, which
is equipped with a wide range of sensors and devices to provide services such
as activity recognition and tracking as well as voice recognition. The layout of
the GatorTech is shown in figure 2.5. The purpose of this project is to create
assistive environments such as homes that can sense and record the interac-
tion of residents with the environment. In addition to this, the smart home can
enact mappings between the real world and remote monitoring and interven-
tion services. Besides, there are some early smart home projects including the
following: PlaceLab [79] from the MIT, Adaptive Versatile home (MavHome)
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Figure 2.5: Gator tech smart house [3]

[80] from the University of Texas at Arlington and Intelligent System Lab (ISL)
[81] from the University of Amsterdam.

• The Centre for Advanced Studies in Adaptive Systems (CASAS) is a smart
home project that was developed at Washington State University in 2007. CASAS
is a multi-disciplinary research project focused on building an intelligent home
environment by using unobtrusive sensors and actuators [82]. CASAS could be
used for research in several areas including machine learning, assistive technol-
ogy, and activity recognition. The CASAS inventors have recently developed
new research called "smart home in a box" [83]. The smart home in a box is a
lightweight toolkit smart home layout that can be effortlessly installed to pro-
vide smart home capabilities out of the box with no customization or training
needed. This toolkit was installed in 32 smart homes and generated many pub-
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licly available datasets. One of the capabilities is activity recognition which
renders real-time activity labeling as sensor activations arrive in a stream and
activity discovery for unlabeled data by employing unsupervised learning al-
gorithms.

• SWEET-HOME [84] is a new smart home environment designed based on au-
dio technology that is supported by a nationally French research project. This
smart home project aims to have three main goals: proving an audio-based in-
teraction technology that allows the residents to have full control over their
smart home, detecting dangerous situations (e.g. fall at home) and detect de-
viations of behavior to enhance elderly-care alert systems, finally improving
the social inclusion of the frail population and older people. The context-aware
decision process is one of the interesting research paths from this smart home
project, that employs a dedicated Markov Logic Network method to improve
the experience to cope with uncertain events indicated from generated sensor
data[85].

• In 2011, a smart home project "Unobtrusive Smart Environments for Indepen-
dent Living" (USFIL) started which strives to provide affordable and excellent
healthcare assistance utilizing the smart home system. Different types of sen-
sors are installed from this smart home including a wrist wearable unit, camera,
microphone, and Kinect sensor to recognize the basic daily physical activities
(lying, sitting, walking, standing, cycling, running, ascending and descending
stairs) of elderly people [86]. The goal of this project is to create applications
addressing the gap between advanced technologies and the aging population.

• A smarter and safer home was proposed by [87] at CSIRO to improve elderly
people’s quality of life. To accomplish this, numerous smart home environ-
ments are installed in different locations to recognize human activities and
movements. Based on this project, a smart assisted living was proposed by [88]
to allow older adults to remain independent as long as possible in their homes.
The sensors distributed in this smart home are expected to generate a contin-
uous data stream to indicate the residence’s movements. Extracting features
and analyzing the generated data from the smart home using AI mechanisms
are helpful to conduct diagnosis and decision making by health caregivers and
clinical experts.

These smart home projects have produced many datasets some of which are pub-
licly available and can be used for further studies by researchers. The smart home
datasets used in most of the studies of activity recognition are reviewed in section
2.3.2.

2.3.2 Smart Home Datasets
In this section, many smart home datasets are reviewed which are mainly used for
human AR. The first two datasets are used in this thesis. The other seven datasets can
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possibly be used in our future work. The long-term goal of our research is to explore
transfer learning techniques over different smart homes.

i. Halmstad Intelligent Home [78] has a smart home dataset. The dataset was
recorded by 11 residents from 37 binary sensors. Sensor events are represented
by a particular ID of the activated sensor, the associated binary state, and a
time-stamp of when the event occurred. This dataset has 8 activities: 1. go to
bed 2. use bathroom 3. prepare breakfast 4. leave house 5. get cold drink 6.
office7. get hot drink 8. prepare dinner.

ii. Two public smart home datasets ("OrdonezA" and "OrdonezB") is provided
in which residents from both smart homes perform their daily living activities
[89]. In OrdonezA, the resident performed 9 daily activities in 14 days over
19932 minutes from 12 binary sensors. In OrdonezB, the resident performed
10 daily activities in 22 days over 30495 minutes from 12 binary sensors. Both
datasets are fully and manually labeled and details are shown in table 2.2.

Table 2.2: Details of recorded Ordonez datasets

Home A Home B

Setting Home Home
Rooms 4 5
Duration 14 days 21 days
Sensors 12 12
Number of Activities 9 10
Home setting 4 rooms house 5 rooms house
Number of days 14 days 21 days

Activities

Leaving,Toileting,Showering,
Sleeping,Breakfast,
Lunch,Dinner,SpareTime/TV,
Snack, Grooming

Leaving,Toileting,Lunch,
Showering,Sleeping,
Snack, Breakfast, Dinner,
SpareTime/TV, Grooming

Number of sensors 12 sensors 12 sensors

Sensors

PIR(Shower,Basin,Cooktop),
Magnetic (Maindoor,Fridge,
Cabinet, Cupboard), Flush(
Toilet), Pressure( Seat, Bed),
Electric( Microwave, Toaster)

PIR( Shower, Basin, Door
Kitchen, Door Bathroom,
Door Bedroom) Mag-
netic( Maindoor, Fridge,
Cupboard) Flush( Toi-
let) Pressure(Seat, Bed)
Electric(Microwave )

iii. A study conducted on older adults [90] based on collected data from passive
sensors networks that were placed in 17 flats within an eldercare facility. Vari-
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ous sensors were employed to collect data such as motion sensors and pressure
sensors for a long time (e.g. two years ) in some of the smart homes.

iv. The Intelligent System Laboratory (ISL) [91] introduced datasets from three
smart homes that were collected from an individual activity daily livings. The
datasets were recorded for two months using 14, 23 and 21 sensors from the
smart home A, B, and C respectively. The details of activities and sensors of
these smart homes are illustrated from table 2.3.

Table 2.3: Details of recorded datasets of the ISL

House A House B House C

Age 26 28 57

Gender Male Male Male

Setting Apartment Apartment House

Rooms 3 2 6

Duration 25 days 14 days 19 days

Sensors 14 23 21

Activities 10 13 16

Activities A
Brush-Teeth, Drink, Snack, Go-to-Bed, Leave-house

, Prepare-Breakfast, Prepare-Dinner, Shower, Use-Toilet

Activities B
Brush-Teeth, Eat-Brunch, Eat-Dinner, Drink, Dressed

Go-to-Bed, Leaving-house, Prepare-Brunch, Prepare-Dinner
,take-shower, Use-Toilet, Wash-Dishes

Activities C

Eating, Brush-Teeth, Get-Dressed, Get-Drink, Get-Snack,
Go-to-Bed, Leave-House, Prepare-Breakfast, Prepare-Dinner,

Prepare-Lunch, Shave, Take-Medication, Take-Shower,
Use-Toilet-Downstairs, Use-Toilet-Upstairs

v. Besides the given smart home datasets, [92] provided a dataset that contains
gestures and acceleration data in addition to data from equipped sensors. [93]
provided a public benchmark dataset and broadly used for activity recognition.
It contains recorded data from nine inertial sensors attached to different parts
of the body. 17 volunteers participated to record this motion dataset that related
to 33 fitness activities.

vi. A real smart home dataset was published by [94] for complex scenarios of
multi-residents which is called ARAS (Activity Recognition with Ambient
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Sensing). The dataset was recorded from two smart homes for two residents’
activities in each home for two months.

vii. ContextAct@A4H is a most recent and real-life daily living dataset in the Ami-
qual4Home smart apartment [95]. The smart home is equipped with different
types of sensors to collect data. The dataset was recorded while a resident was
living in the home during two periods in June and November (summer and
fall respectively). The experiment for recording the ContextAct@A4H dataset
was conducted in the frame of a collaboration between LIG, Universidad de
Los Andes (Colombia), and Amiqual4Home. The inclusion of context vari-
ables (humidity, weather, noise, presence of visitors, temperature, etc) is one of
the main contributions fo this dataset.

viii. CASAS project collected datasets from smart homes [82]. 19 datasets are col-
lected from single-resident homes, 4 datasets are recorded from two-residents
homes, the rest of the datasets are collected from larger families or residents
with pets. Different types of binary sensors deployed from the CASAS smart
homes including motion sensors and temperature sensors at various locations.
The sensors were installed on multiple objects from the smart home such as
doors, TV lounge, kitchen stove burners, bathroom, toilet, and bedrooms as
well as other places in the home environment. These datasets could be used
for human activity recognition [83]. The datasets were collected based on the
generated sensor events for long durations of time while daily living activi-
ties are performed by an individual or multiple residents. Table 2.4 shows the
characteristics of the CASAS datasets regarding activity count, sensor count,
duration, and the number of residents.

Table 2.4: Characteristics of CASAS smart home datasets

Datasets Activity count Sensor count Duration Inhabitants

HH101 11 7 1

Tulum2010 16 37 149 days 2

Tworsummer2009 12 86 55 days 2

Tulum2009 10 20 83 days 2

Twor2009 13 71 46 days 2

ix. MIT announced two publicly available smart home datasets using a set of sim-
ple state-change sensors from two different homes that were collected for two
different residents [79]. The datasets used different sensor types including those
coming from motion, switch, and RFID sensors. It is one of the largest datasets
collected from a real-world environment. Table 2.5 shows the number of per-
formed activities, deployed sensors, and durations with residents’ information.
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The common activities of both datasets are "preparing breakfast", "preparing a
snack", "toileting", "preparing dinner", "washing dishes", "preparing lunch".

Table 2.5: Characteristics of MIT smart home datasets

Datasets Activity count Sensor count Duration Inhabitants

Subject 1 28 28 16 days 30 year old woman

Subject 2 9 20 16 days 80 year old woman

2.3.3 Recent Surveys on Smart Homes
In this section, most of the recent survey and review papers on smart homes are re-
viewed and summarized. In 2012 Alam et al. [96] provided a review on smart homes
and a comprehensive summary of prior developments, present situations, and also fu-
ture challenges. In this review, smart home projects were reviewed according to three
main desired services which are healthcare, security, and comfort as well as the objec-
tives of the smart homes. Moreover, detailed information about all the requirements
of smart homes is given such as sensors, algorithms, communications protocols, and
also multimedia devices. Rashidi and Mihailidis, 2012 [97] conducted a survey on
ambient assisted living technologies for elderly people. In this survey, ambient as-
sisted living technologies are summarized regarding smart homes, wearable sensors,
and assistive robotics. Besides, healthcare applications in this survey are also explored
which focus on activity recognition algorithms and context modeling.

A review is presented by Salih and Abraham, 2013 [98] on ambient intelligence
assisted healthcare monitoring and summarized the recent development of ambient
assisted living for elderly people. The review focuses on the use of machine learning
and data mining techniques to ambient assisted living using wearable sensors from
smart homes for older adults and patients with chronic diseases.

Peetoom et al., 2015 [99] performed a systematic investigation on monitoring
technology to activity recognition or a significant event such as falls at home or
change in health status for older adults at home. The review aims to present the latest
technologies that have been used in the smart home to monitor the activities of older
adults. The review shows five main types of monitoring technologies: PIR motion
sensors, body-worn sensors, pressure sensors, video monitoring, and sound recogni-
tion. This review also demonstrates the functionalities and the results of using these
technologies to prolong the independent living of older adults. Positive effects as re-
sults of this review are suggested to both residents and caregivers to use monitoring
technologies.

In 2013, a study on automated methods for real-time human ambulation, activity,
and physiological monitoring was presented. The study aims to address the demands
of assisted living, clinical observations, and rehabilitation, as well as the evaluation
through sensor-based monitoring [100]. Three main areas of sensor-based monitor-
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ing systems are reviewed which are various types of sensors, frameworks and appli-
cations, data collection techniques, data processing and analysis, and research gaps,
limitations, and challenges.

In 2018, Emiro, et al. [101] provided an exhaustive systematic review analysis
of the sensor-based datasets used in human activity recognition. The contributions of
the review are presented as follows. First, the most proper and well-known datasets of
human activity recognition are identified with respect to the type of activities, infor-
mation about residents and data acquisition devices. Secondly, analyzing the segmen-
tation approaches used to extract features, the classification methods used for activity
recognition based on the identified datasets. Furthermore, the number of samples of
data used for training and testing phases as well as the metrics such as accuracy or
f-measure for each dataset are presented. Lastly, several suggestions are provided re-
garding different techniques including segmentation, feature extraction, sampling and
balancing of the datasets for the experimentation processes.

2.3.4 Environmental and unobtrusive sensing
Smart home Environments that are equipped with various non-invasive binary sensors
can be used to unobtrusively monitor the interaction of a resident with the physical
surrounding objects in the smart home and resident’s movements [102]. The interac-
tions are the Activities of daily life (ADL) which have been used to recognize activity
or action. Most of the ADLs in smart homes are performed by a resident in a particu-
lar location with the specific object in the smart home [103]. For example, showering
activity usually takes place in the bathroom, cooking activity usually takes place in
the kitchen. Therefore, the activity could be recognized from the interaction between
a resident and an object combined with environment observation. These sensors are
employed to detect a resident’s presence and interaction with the objects and furniture
(e.g., dining table and chairs, bed, sofa) [104]. For example, if sensors indicate that
the microwave or stove is on and the refrigerator or the cupboard is opened or there
is water usage in the kitchen, this strongly shows that the activity of cooking is taking
place. Therefore, it has been found the smart home sensors data could constitute im-
portant information to recognize human activities within smart home environments
[105]. These sensors are being developed and becoming increasingly cheaper and
smaller, more efficient and accurate, flexible and reliable, data-driven intelligent sys-
tem, responsive and also increasing communication capability [106]. Due to these
factors and also the availability of new technologies that contribute to the growth
of sensor-based devices, the costs of sensors are being gradually reduced. The inte-
gration of networking technologies and ubiquitous sensing enables the evolution of
many new applications in various fields such as s intelligent transport systems and
smart home. The measurements generated by those sensors within the smart home
are continuously transferred to the home gateway, in order to be used by activity
monitoring systems [106].
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2.3.5 Embedded Sensors
In this section, common embedded sensors used in smart homes for recognizing activ-
ity daily life will be summarized and also their advantages and disadvantages will be
discussed. The most common environmental sensors are cheap devices and a binary
sensor outputs 0 or 1. Binary sensors measure simple changes such as "door open"
or "door closed" [107]. Simple binary sensors like motion sensors, state-change sen-
sors, pressure sensors, and contact switches could be deployed on various objects in
the environment to monitor residents’ movement and locations [106].

• Motion sensors such as Passive InfraRed (PIR) are being broadly used [98,
29, 33, 72, 32] to detect and monitor the presence of the users in particular
home locations (e.g., living, kitchen, or bathroom) and to track user’s motion
patterns. PIR sensors were used for stress monitoring and support to clinical
decisions [108], and for moving targets detection and localization [107], and
security [109].

• A simple state-change sensor has been employed for detecting any change of
the state of an object which indicates the human-object interactions [110, 111,
112, 113, 114]. For example, a state-change sensor could be attached to the
handset of a telephone in order to detect the human-object interaction when the
handset will be lifted by a resident from the telephone base station in the smart
home.

• Pressure sensors have been commonly used to detect when the resident lying
on the bed or sits on a chair, sofa, or floor. The pressure sensor can be used to
track the resident’s movement and location [38, 115, 116, 117]. For example,
a pressure sensor could be placed on the floor in front of the kitchen stove to
detect cooking activity with the help of other sensors.

• Contact switch sensors have been mainly installed on the doors of rooms,
fridge, and cabinets for detecting particular human-object interactions that the
resident performs with these objects [118, 119, 120, 23, 121, 122, 123, 124].
Examples of such sensors are magnetic sensors that have been used to detect
when drawers or doors are closed or opened [125].

In real-world scenarios, a single binary sensor is not sufficient for activity de-
tection. Therefore, activity monitoring systems usually use multiple sensors such as
motion detectors, break-beam sensors, pressure sensors, and contact switches to pro-
vide more information associated with activity monitoring. These sensors could be
activated by gross movement, gross manipulation, point movement, and point manip-
ulation in order to monitor and track resident’s activities [126]. Ordonez et al.,2013
[89] studied activity recognition for seven common daily activities in a smart home.
Activities are Leaving, Toileting, Shower, Sleeping, Breakfast, Dinner, and Drinking.
Three different types of sensors were used to record activities: PIR sensors were used
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to detect motions in a particular area of the home, for example, kitchen area or liv-
ing room, open or close states of cupboards and doors were detected by reed switch
sensors, flushing toilet detected using float sensors. The binary sensors have been dis-
tinguished by these properties: low-cost, long-live and easy installation and replacing
[11]. Furthermore, binary sensors can be used for unobtrusive human-object interac-
tion recognition in a privacy-preserving way and also they require minimal computa-
tion resources to collect data. However, since the binary sensors provide very limited
information, the main drawback is they may not be suitable for detecting activities of
multi-resident from a smart home [11]. Radio-Frequency Identification (RFID) can
be used based on a combination of a wearable sensor and smart home sensor tech-
nologies. Monitoring or human activity recognition systems based on sensor fusion
that uses data from disparate sensors and sources leads to reduce uncertainty than us-
ing these different types of sensors individually. RFID comprises a reader that will be
used by the resident and an electronic tag attached to a physical surrounding object in
a smart home environment [127, 128, 129]. The tag will respond to a unique identi-
fier when interrogated by a reader from the resident and then it will electronically be
stored in memory [130, 131, 132, 133].

In a smart home environment, both active and passive RFID tags can be deployed
to detect different types of activities. Fujinami et al.,2015 [134] performed research
to track the long-term daily life activities of older adults with dementia using RFID
tags attached to slippers from a set smart home in japan. Philipose et al.,2004 [122]
developed an activity recognition system based on RFID tags attached to the phys-
ical objects in a smart home and presented activity information by a probabilistic
sequence of the used physical objects. Kim et al.,2013 [135] adopted RFID tech-
nology to propose a real-time indoor ubiquitous-healthcare system (U-healthcare) in
order to precisely locate and track elderly people. The U-healthcare system analyses
the elderly’s location based on the time slots and length of time that the elderly stay in
the same place to recognize the user’s movement and activities and determine elderly
people’s well-being. This shows that the advantages of RFID in healthcare systems
particularly to track and monitor the elderly to stay safe and live independently at
home [136]. Although the RFID has been used successfully in the aforementioned
studies, RFID suffers from collisions in both the reader and tag when several RFID
readers simultaneously interrogate the RFID tag. Thus, the RFID tag cannot distin-
guish among the unique identifier sent by the RFID reader.

2.3.6 Sensor Data Processing
Raw data provided by various sensors from smart homes need to be pre-processed
for the later phases such as activity recognition modeling. This process plays an im-
portant role in achieving the research’s target, output accuracy as well as recognition
results. Existing research from smart home environments mainly focuses on learn-
ing different algorithms and reasoning approaches. Yet not sufficient researches pub-
lished to pre-process smart home data which takes place between the raw sensors and
activity recognition systems.
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Figure 2.6: Sensor Data Processing

As a part of the activity recognition overview, processing sensor data from smart
homes will be reviewed and discussed. Figure 2.6 shows sensor data processing for-
malization which are pre-processing and segmentation. These approaches will be fur-
ther explained and analyzed to review the existing literature and extracting important
information to make the processing sensors data of human activity recognition sys-
tems quite clear.

1. Data Pre-processing

Collected data from different types of sensors in smart homes or wearable is
inherently noisy. The operations of data preprocessing essentially involve data
cleaning to remove irrelevant samples, data interpolation to cope with missing
values in the dataset, and data transformation to build the proper data format.

(a) Data Cleaning
Raw data collected from fusion sensors contain redundant information,
noise, and errors caused by batteries discharged, sensor failure detection,
and sensor network failure. Data cleaning is required to compensate for
these issues. Wilson and Atkeson [126] preprocessed four binary sensors
and RFID sensor data using both Bayes and Particle filters. The outcomes
of the Bayes filter work properly in a noisy environment on tracking an
individual user, whereas the particle filter is better in scenarios with group
users. Noury and Hadidi [2] removed nonlinear artifacts using a median
filter and the redundant information was removed by the first-order-hold
filter from the sensors data installed in various places in a smart home.
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Guettari et al.,2014 [137] used a median filter to remove abnormal mea-
surements that generated from passive presence sensors to detect human
presence within a smart home environment.

(b) Handling Missing Values
Recorded data from sensors may contain missing values, particularly from
RFID sensors [11]. Data interpolation can be used to solve missing value
issues. Parlak and Marsic, 2013 [138] detected object motions for trauma
resuscitation using passive RFID tags where an issue about irregular in-
tervals tag readings appeared. The issue was generated by both signal
transmission delay and irregularities in data arrival. Linear interpolation
was used to solve the missing values within each window. Recorded data
from sensors may contain missing values, particularly from RFID sensors
[11]. Data interpolation can be used to solve missing value issues. Muaaz
and Mayrhofer, 2013 [139] used mobile phones to measure human walk-
ing activity. The data is recorded using accelerometer sensors that cannot
render data at equal intervals. Linear interpolation was conducted to re-
shape the data generated by the acceleration sensor into equal intervals.

(c) Data Transformation
For further analysis, data has to be prepared according to the system re-
quirements. Rodner and Litz,2013 [140] applied association rule mining
methods to model users’ activities in smart homes. The recorded data of
this study was generated by motion sensors and also integrated with a lux
meter. The format of the data is (timestamp [numeric], motion [binomi-
nal] and lux [numeric]) including numeric values that could not be used
in rule mining. Therefore, the numeric values are converted to nominal
values in order to be used by the rule mining. Sun and Zhang,2014 [141]
converted recorded electrocardiogram ( ECG) data from analog signals to
digital signals for further analysis. Moreover, normalization as a common
data format transformation is used to obtain representation formal [142].

2. Data Segmentation

Data segmentation is a preprocessing technique to divide the raw data into
small blocks of information since sensors data are normally generated as a
continuous flow of raw data. The following three segmentation approaches are
used in current literature.

(a) Temporal-Based Segmentation. Temporal based segmentation or sliding
window segmentation is commonly used that divides raw sensor data into
chunks of equal time duration. Ordóñez et al.,2013 [113] conducted a
one-minute time interval to divide the raw data generated from binary
sensors equipped in a smart home environment. This interval length is de-
termined by considering proper labeling and activity discrimination. Se-
lecting the optimal value for the time interval to segment raw sensors data
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from the smart home environment is highly critical [143, 144, 145, 146].
A short-time interval may generate duplicate activities, particularly for a
long-duration activity such as sleeping, which leads to creating an imbal-
anced dataset. Besides, a long interval may combine several activities into
the same segment resulting in losing important information [147, 148,
149]. Therefore, data segmentation requires effective heuristics for select-
ing an optimal value of the time-interval. Dynamic sliding windows are
also used in several studies to segment raw sensor data based on activities
or sensors ID [145, 146, 150]. Banos et al.,2014 [144] studied different
window sizes with a non-overlap sliding window to segment sensor data
of human activity recognition. The study revealed that the short window
size normally leads to better recognition performance. However, based on
human interpretation these approaches lack a longer temporal represen-
tation which is crucial for AR and has been recognized as a significant
aspect of performance of sliding window approaches. Therefore multiple
incremental fuzz temporal windows (FTWs) [151] is proposed to segment
the timeline of human activities and to capture long-term and short-term
activities. FTWs are compared with other approaches such as Equally
Sized Temporal Windows(ESTWs), Raw and Last Activation (RLA), and
Raw and Last Next Activation (RLNA) [151, 152].

(b) Activity-Based Segmentation
Segmentation of data based on activities consists of splitting the raw sen-
sor data distinguishing the start time and end time of each activity. Se-
lecting the correct boundary of the activities is the main issue of this ap-
proach [11]. A method to distinguish static activities such as sleeping
from movement-related activities such as leaving home is proposed by
Yoshizawa et al.,2013 [153]. The method detects the change points based
on a threshold for the static activities and the starting time and ending
time of the movement-related activities are determined by the analysis
of variations in the frequency domain. This method is mainly possible in
laboratory environments.

(c) Sensor Event-Based Segmentation
Segmentation of sensor data based on sensor events has been used to iden-
tify activities that have a sequence of movements, events, or actions that
occur in specific time order or are interleaved with other activities’ events,
for example, cleaning or cooking. Different from the temporal-based seg-
mentation approach, activities could not be split uniformly in the time
since events happen sporadically, hence the size of the time windows is
not fixed. Raw sensor data segmented based on the duration of each sen-
sor event [154, 155, 156].

Techniques of sensor data processing are used in this research project to gen-
erate the input datasets from the raw sensor data for experiments. In this research
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project, multiple incremental FTWs is used to generating input datasets since tem-
poral models i.e., LSTM and 1D CNN have achieved better performance based on
FTWs compared to other techniques such as ESTWs, RLA, and RLNA for AR.



Chapter 3
Addressing activity recognition
challenges

3.1 Motivation
The research project Situation Awareness for Ambient Assisted Living (SA3L) fo-
cused on the development of robust machine learning systems to improve the un-
derstanding of resident behaviour patterns, health and needs within sensor-equipped
home environments. The long term goal of the systems is to process and share infor-
mation across multiple smart homes to reduce the learning time and data collection
as well as increase accuracy for applications such activity recognition. One solution
through machine learning development is to use transfer learning to enhance sys-
tems ability. Knowledge transfer could be achieved by aligning learned manifolds to
build a correspondence between different disparate data sets. Accordingly, knowledge
transfer using machine learning(i.e. transfer learning), is gained during the transition
from one learned domain to another, aiming to improve learning in the target task
by leveraging knowledge from the source task [163]. In our work, it is hypothesized
that learned manifolds from disparate data sets could be used for transfer learning.
Therefore, it is crucial to investigate the stability of t-SNE maps in order to properly
align manifolds for the purpose of transfer learning. Therefore, the first contribution
of this thesis is investigating stability of t-SNE maps, which is described in section
3.2. The second contribution is proposing an efficient AR method in smart homes
to further improve AR by including feature sensor readings in addition to preceding
sensor reading, which is described in section 3.4. The third contribution is investigat-
ing handling imbalanced class problems in AR from data-level and algorithms level.
We propose a data level prospective combined with a temporal window technique to
handle imbalanced data in AR, which is described in section 3.5.

I contributed to the conceptualization, design and formulation, and methodology
of the papers that are presented in the next sections. I implemented the proposed meth-
ods and performed experiments, validation, formal analysis as well as investigation.
I wrote the majority of the manuscripts, reviewing and editing the manuscripts.

27
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3.2 Paper 1: Stability analysis of the t-SNE algorithm
for human activity pattern data.

This paper was presented and published in the 2018 IEEE international conference
on Systems, Man, and Cybernetics (SMC2018)

3.2.1 Background
Exploratory data analysis based on all available dimensions of high dimensional
datasets (HDD) is generally intractable to predict future insight and to make valu-
able decisions. Dimensionality reduction (DR) methods are used to derive the un-
derlying manifold structure of datasets with low intrinsic dimensionality that could
be considered as the minimum number of parameters needed for explaining the ob-
served properties of the data. Furthermore, the global and local structure of the HDD
in the lower-dimensional representative space could be preserved by such parameters
[157].

Methods that linearly map HDD into a lower-dimensional representation such as
Principal Component Analysis (PCA) [158] and multidimensional scaling (MDS)
[159] are widely used particularly in business and marketing applications for DR
and data visualization. PCA and MDS reduce the dimensions of HDD by computing
low-dimensional maps where dissimilar data points are far apart. However, present-
ing similar data points close together in a low-dimensional map is crucial for HDD
that lie on or near a low dimensional manifold, which is often difficult using linear
mapping techniques [160]. Hence, the linear techniques for DR such as PCA and
MDS are often not recommended for many complex and non-linear datasets [161].
Instead, a common non-linear DR technique such as the t-SNE [160] is used to ren-
der low dimensional representations of the high-dimensional input data [162, 163]
presumably close to the sought real low-dimensional manifold. In contrast to PCA
and MDS, t-SNE as a non-linear DR method can cope with complex data sets that are
likely to lie on a low-dimensional non-linear manifold [164].

The primary problem studied in this work is how to analyze the stability of the
t-SNE algorithm output. The proposed approach utilizes comparisons of several out-
put maps as a whole and partially by clustered low-dimensional data points. This is
performed by using smart home data of human activity patterns as input data.

Learned manifolds can be aligned to build a correspondence between different
disparate data sets and thereby provide knowledge transfer across the data sets from
different domains [165]. Accordingly, knowledge transfer using machine learning
(i.e. transfer learning), is gained during the transition from one learned domain to
another, aiming to improve learning in the target task by leveraging knowledge from
the source task [166]. In our work, it is hypothesized that aligning learned manifolds
(by a data-driven model such as t-SNE) from disparate data sets could be used for
transfer learning.
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3.2.2 Contribution
To explore stability of human activities when observed in t-SNE low dimensional
maps, Normalized Local Procrustes Analysis (NLPA) proposed to non-linearly align
manifolds by using locally linear mappings. NLPA is an extension of Local Procrustes
Analysis (LPA) [167] to compare locally aligned clusters alignments to a complete
map, which can be compared to Procrustes Analysis (PA) [168] as well as being
used for stability analysis. Results of NLPA outperforms the results obtained by PA.
Algorithm 1 shows the NLPA procedure. NLPA applies PA on each cluster and then

Algorithm 1 Normalized Local Procrustes Analysis (NLPA)

1: Input: M1,M2 M1,M2 are the input t-SNE maps
2: nc← n number of clusters created using LPA
3: for i← 0 to nc do
4: {M1,M2,−,norm1,norm2, µM1}← PAM1,M2
5: M1←M1 ·norm1 µM1
6: M2←M2 ·norm2 µM1
7: templist1←M1
8: templist2←M2
9: end for

10: Map1← templist1
11: Map2← templist2
12: disparity← ∑

n
i0
(
Map1,i−Map2,i

)2

dissimilarity between the two sets
13: Output: disparity

normalizes the clusters so that the transformed data-points in each cluster are mapped
back to the original space of the data after alignment. Normalization is done by mul-
tiplying the clusters with the norms of the aligned clusters that are produced by PA
and then adding the mean of the first cluster, as shown in lines 5-6 of Algorithm 1.
This normalization allocates the combined clusters of data-points to the same space
as to original data. Finally, NLPA computes the disparity and estimated mean prob-
ability of obtaining the true corresponding data point within the aligned five nearest
neighbors for the combined aligned clusters.

3.2.3 Results & Discussion
t-SNE stability has gained a lot of interest in projecting high-dimensional data into
a low-dimensional manifold with the aim of transferring knowledge using manifold
alignment. However, since t-SNE is a stochastic algorithm and since there is a large
variance of t-SNE maps, a thorough analysis of the stability is required before apply-
ing transfer learning. Exhaustive scenarios are considered for an investigation about
the t-SNE stability through manifold alignment using PA and NLPA. Table 3.1 shows
the estimated disparity and probability of obtaining the correct correspondence obser-
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vation within five nearest neighbors of the PA and the NLPA methods respectively for
different values of perplexity. It turns out that for all perplexity values considered the
disparity values from using NLPA are less than 4% of the corresponding disparity
value from using PA. In other words, the NLPA method is 25 times better than the
PA method in terms of disparity. Also, the disparity from using PA decreases slightly
for perplexity ranging from 5 to 20 while it increases for perplexity values from 25
to 50. The disparity values from using NLPA increases almost monotonically for all
perplexity values considered.

With respect to the probability of obtaining the correct correspondence within
the five nearest neighbors, the PA correct correspondence mean values commonly
increase by increasing perplexity, especially as the perplexity value reaches 25. On
the other hand, the probability of obtaining correspondence within the five nearest
neighbors slightly decreases by increasing perplexity ranging from 5 to 50 for NLPA.

Figure 3.1 shows the alignment of t-SNE maps that has been used to investigate
the t-SNE stability using PA and NLPA. The alignment maps in Figure 3.1 indicate
that the t-SNE maps are stable locally compared to globally aligned t-SNE maps using
PA.

Table 3.1: Estimated expected disparity and estimated probability of obtaining the
correspondence observation within five nearest neighbors.

Pe
rp

le
xi

ty

Disparity
Probability of obtaining

the correspondence within
the 5 nearest neighbors %

Mean (SE)
PA NLPA PA NLPA

5 0.5954 (0.0206) 0.0010 (0.0002) 7.363 (0.0074) 98.541 (0.0099)
10 0.3135 (0.0248) 0.0006 (0.0001) 24.527 (0.0226) 98.541 (0.0099)
15 0.1097 (0.0167) 0.0007 (0.0001) 44.618 (0.0235) 98.476 (0.0099)
20 0.0291 (0.0022) 0.0006 (0.0001) 60.365 (0.0163) 98.450 (0.0099)
25 0.0296 (0.0026) 0.0007 (0.0001) 63.873 (0.0189) 98.485 (0.0099)
30 0.0447 (0.0058) 0.0009 (0.0002) 56.693 (0.0261) 98.435 (0.0099)
35 0.1483 (0.0152) 0.0029 (0.0005) 28.216 (0.0241) 98.126 (0.0098)
40 0.1648 (0.0129) 0.0046 (0.0006) 26.186 (0.0223) 97.869 (0.0098)
45 0.1699 (0.0123) 0.0049 (0.0006) 31.522 (0.0256) 97.637 (0.0098)
50 0.1501 (0.0116) 0.0056 (0.0006) 38.485 (0.0296) 97.744 (0.0098)

Despite showing improvements to align manifolds using NLPA over PA, using
only one datasets is a limitation in this study that could be addressed in future re-
search. Future work will explore extensions of NLPA for aligning low-dimensional
manifolds of disparate data sets. Then t-SNE low-dimensional manifolds of disparate
data sets will be compared using NLPA to discover the common manifolds of the
disparate data sets to be used for transfer learning.
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(e) PA for perplexity 35
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(f) NLPA for perplexity 35

Figure 3.1: Manifold alignment using PA and NLPA for three cases



32 CHAPTER 3. ADDRESSING ACTIVITY RECOGNITION CHALLENGES

3.3 Paper 2: Efficient activity recognition in smart
homes using delayed fuzzy temporal windows on
binary sensors.

This paper is published in IEEE Journal of Biomedical and Health Informatics.

3.3.1 Background
Existing approaches for activity recognition in smart homes perform predictions in
real time based on sensor activations that precede the evaluation time. Due to only
relying on previous activations, such real-time approaches may lack precision in rec-
ognizing some daily life activities. To overcome this problem, it becomes necessary to
know which sensor activations are generated later since the activity to be recognized
will depend on the subsequent sensors.

Although real-time approaches enable permanent interaction with users in smart
environments, it has a lower recognition rate [169, 170]. This is not admissible in
some critical cases such as diagnosing dementia, as it requires more accurate activity
recognition to correctly detect abnormal behaviours in the inhabitant, [171]. These
cases, although less frequent, prevent AR from being a high-precision tool for assess-
ing the conditions of inhabitants in smart homes.

The contribution of this paper takes the above-mentioned issues into considera-
tion. We propose a data-driven approach that aims to increase precision and sensitivity
in daily activity recognition by means of i) delaying the activity recognition, ii) ex-
tracting representations of binary sensor activations that occur before and after the
time where the prediction is made, iii) evaluating Deep Learning methods for clas-
sification, and iv) analyzing the impact of the delayed AR process on precision and
sensitivity.

3.3.2 Contribution
The contribution of the study is to propose a method that delays the recognition pro-
cess and includes sensor activations that occur after the point in time where the deci-
sion is made. For this, the proposed method uses multiple incremental fuzzy temporal
windows (FTWs) to extract features from both preceding and partial oncoming sen-
sor activations. In order to avoid the human configuration of FTWs we have modeled
their shapes with the Fibonacci sequence, which has been defined to model incre-
mental sequences in a harmonic way under the fields of mathematics, science, and
engineering [172]. The proposed method is evaluated with three temporal deep learn-
ing models (CNN and LSTM Network as well as hybrid models combining CNN and
LSTM), on a binary sensor dataset of real daily living activities. The experimental
evaluation shows that the proposed method achieves significantly better results than
the real-time approach and that the representation with fuzzy temporal windows en-
hances performance within Deep Learning models. Analyzing the impact of delaying
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the activity recognition by using oncoming sensor activations in real daily activities.
Specifically, showing the impact of including oncoming sensor activations in activity
recognition to improve the recognition of some rare activities such as leaving, snack,
grooming, and dinner that have been poorly recognized using only real-time activity
recognition.

3.3.3 Results & discussion
In a real-time activity recognition scenario, only past sensor data are considered for
each evaluation time. Evaluation time is the time when the decision-making of each
activity has been developed. To predict what activity has been performed in a specific
time T, different time delays of oncoming sensors after the time T in addition to the
preceding sensor activations of the time T are included in the feature extraction based
on FTWs. For example, now (Evaluation time), we evaluate what activity was devel-
oped 4 hours ago (Evaluated time). Evaluated time. It is the time which is evaluated
by the classifier to recognize which activity has been developed in this point of time
based on the preceding and oncoming sensor data. In the case of real time, evalua-
tion time is equal to the evaluated time. In the case of delays in time that consider
oncoming sensor data, evaluation time is higher (delayed) from evaluated time.

In the scenario where the AR is delayed, preceding sensor activations with differ-
ent time delays, particularly 5 minutes, 20 minutes, 1 hour, and 4 hours, are tested to
improve the recognition process. The results show that delaying time with LSTM in
decision-making leads to building more accurate models. The results are significantly
improved when considering oncoming sensor activations and increasing delays in the
evaluated time. In house A, for example, the total results of the F1-score of the model
in real-time is 89.05, while the results of the model are improved notably, up to 96.44,
when considering oncoming sensor activations. Tables 3.2 and 3.3 show the results
of the F1-score and training time of LSTM, CNN, and the hybrid CNN LSTM based
on FTWs from home A and B respectively. The results indicate that the F1-score of
the models improves substantially by increasing time delays with a slight increase
of training time. This means that delaying the decision-making of human activity
recognition yields better and more accurate models.

In summary, the proposed method of this study has enhanced the models for rec-
ognizing all the activities performed in homes A and B while maintaining a low time
cost. We highlight that the proposed model with FTWs and Deep Learning achieves
encouraging performance particularly in the activities that real-time models have dif-
ficulties recognizing accurately, such as Leaving, Snack, Grooming, and Toileting
from home A. Regarding home B, the results of the same activities in addition to
Dinner are significantly improved. This refers to the fact that taking the oncoming
sensor activations into account is important in order to enhance the learning process
of the models.
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Table 3.2: F1-score and training time (minutes) of LSTM, CNN, and CNN LSTM
with different delays in time based on FTWs from Ordonez Home A (m=minutes,
h=hour)

LSTM CNN CNN LSTM

Activity
5 m

delay
20 m
delay

1 h
delay

4 h
delay

5 m
delay

20 m
delay

1 h
delay

4 h
delay

5 m
delay

20 m
delay

1 h
delay

4 h
delay

Breakfast 95.18 95.87 96.87 96.95 92.91 93.24 93.29 94.69 95.22 95.87 96.78 97.99

Grooming 66.85 67.96 71.24 86.19 66.71 71.28 76.81 83.68 72.76 75.28 81.26 86.19

Leaving 91.17 91.85 94.15 99.85 94.31 96.71 96.83 99.49 97.41 98.21 98.78 99.85

Lunch 96.88 97.96 97.82 99.00 95.76 96.73 97.22 98.92 96.11 96.42 96.57 99.07

Showering 95.21 95.53 96.89 98.21 93.23 93.53 95.11 96.49 94.52 95.62 95.79 99.98

Sleeping 99.68 99.72 99.33 99.85 95.42 96.38 96.87 99.73 99.73 99.57 99.67 99.85

Snack 93.72 94.99 96.82 99.31 89.62 92.21 95.14 98.42 97.99 98.36 98.72 99.34

Spare Time100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00

Toileting 73.52 73.68 74.73 90.76 65.23 67.27 71.62 86.97 78.75 82.51 82.98 90.76

Total 90.24 90.84 91.97 96.44 88.13 89.70 91.43 95.37 92.49 93.53 94.52 96.97

Train-time3.91 4.1 4.6 5.1 2.3 2.7 3.1 4.01 3.2 3.5 3.9 4.6

Table 3.3: F1-score and training time (minutes) of LSTM, CNN, and CNN LSTM
with different delays in time from Ordonez Home B (m=minutes, h=hour)

LSTM CNN CNN LSTM

Activity
5 m

delay
20 m
delay

1 h
delay

4 h
delay

5 m
delay

20 m
delay

1 h
delay

4 h
delay

5 m
delay

20 m
delay

1 h
delay

4 h
delay

Breakfast 93.31 94.11 94.81 99.69 91.27 91.97 95.65 99.25 94.33 94.87 96.43 99.54

Grooming 78.37 78.89 79.23 91.97 73.14 76.36 82.85 87.07 78.91 83.22 85.23 90.67

Leaving 93.62 98.72 98.72 99.50 94.28 98.51 98.63 99.39 98.84 98.86 98.89 99.55

Lunch 95.41 95.54 96.22 99.02 92.84 93.14 95.87 98.43 96.96 96.94 97.12 99.14

Showering 89.42 90.1 90.32 98.85 87.12 87.98 92.65 99.42 89.31 94.84 96.42 99.42

Sleeping 99.41 99.48 99.67 99.80 99.48 99.51 99.63 99.68 99.64 99.65 99.68 99.73

Snack 84.67 85.42 85.67 96.39 81.57 83.63 89.71 94.49 86.53 88.94 92.74 97.63

Spare Time 96.98 96.93 96.98 99.33 97.14 97.52 97.58 98.95 96.92 97.12 97.54 99.29

Toileting 62.37 66.37 67.12 86.23 62.73 65.72 69.43 76.17 67.63 72.78 76.68 85.19

Dinner 81.24 84.24 86.24 97.39 79.16 83.16 88.83 95.62 78.83 83.74 87.68 97.03

Total 87.48 88.98 89.49 96.82 85.87 87.75 91.05 94.84 88.79 91.09 92.84 96.72

Train-time 4.9 5.23 5.41 5.93 3.17 3.33 3.84 4.31 4.36 4.51 4.82 5.71
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3.4 Paper 3: Efficacy of Imbalanced Data Handling
Methods on Deep Learning for Smart Homes
Environments.

This paper is published in SN Computer Science Journal.

3.4.1 Background and Contribution
Human activities are highly diverse not only in the form of different sensor activa-
tions but the frequency of activities themselves are inherently imbalanced and hence
accurate AR is challenging from a machine learning perspective. Applying a machine
learning model on an imbalanced dataset, it tends to partially or completely ignore
the minority classes. As an example cooking may occur with a higher frequency than
grooming. Another example is the vast difference in the number of examples between
eating and sleeping where the latter occurs with a much higher frequency in data sets
collected over a long duration. This study focuses on investigating the particularly
problematic aspect of learning activities over days or even months which are imbal-
anced.

Despite many past efforts of research on the class imbalance problem and ap-
proaches to cope with this general problem, there is a lack of empirical work on tar-
geting machine learning beyond shallow methods [173]. Traditional machine learning
algorithms such as decision tree, support vector machine, naive Bayes, and hidden
Markov models have been used to minimize the recognition error [174, 175]. Satisfy-
ing recognition results have been achieved by adopting these approaches. However,
such algorithms may heavily depend on classical heuristic and hand-crafted feature
extraction which might be limited by human domain knowledge [176]. A natural vari-
ation within each activity is often present in collected smart home datasets and is not
unlikely to fluctuate even more between different residents. These variations are also
influenced by contextual factors such as time of the day and location of where the
activity is performed. Given these conditions as well as considering the multitude of
choices at sensor installation (e.g. sensor types and sensor locations) AR based on
shallow learning where features are hand-crafted can be challenging. Therefore, dis-
covering more systematic methods to obtain features has drawn increasing research
interests [177]. The influence of deep learning has been demonstrated in many areas
not only in image classification such as speech recognition, natural language process-
ing as surveyed in [176]. Consequently, studies of activity recognition using deep
learning have multiplied because the number of elderly smart-home health-care ser-
vices has steadily increased for the last few years and all reporting state of the art
performances achieved on diverse activity recognition benchmark datasets [178, 179].
Especially two methods have brought promising results of AR, LSTM and CNN when
using data prepared with a Fuzzy-based approach to represent temporal components
of the data [151, 180]. However, these two machine learning algorithms for AR have
not been studied from the context of different temporal preprocessing methods along
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with traditional methods for handling class imbalance in order to improve recognition
accuracy.

The study described in this paper is therefore designed to fill parts of such a
knowledge gap and also put a particular focus on the classes representing activities
with a relatively low number of observations (i.e., minority classes). Thus, the main
contribution of this paper is the study of well-known class imbalance approaches
(Synthetic Minority Oversampling Technique, Cost-Sensitive learning, and Ensemble
learning) applied to activity recognition data with various temporal data preprocess-
ing for the deep learning models LSTM and 1D CNN.

3.4.2 Results & discussion
The results of the experiments using LSTM and CNN are presented and discussed
in the aspect of different methods of handling imbalanced classes and different fea-
ture extraction approaches. FTWs and ESTWs are used to pre-process data and build
the datasets for training. SMOTE, Cost-sensitive and Ensemble learning methods are
used for handling the class imbalance present in the datasets. Table 3.4 shows the re-
sults of the F1-score of the LSTM and CNN models from the home A for the imbal-
anced dataset, with Cost-Sensitive corrections and minority sampling using SMOTE.
The F1-score of the minority classes which are Breakfast, Grooming, Lunch, Show-
ering, Toileting, and Snack from the home A are improved using SMOTE based on
both approaches of extracting features and both models.

Table 3.4: F1-score Home A

FTWs ESTWs

Imbalanced
data

Cost-
Sensitive

SMOTE

Ensem
ble

Imbalanced
data

Cost-
Sensitive

SMOTE

Ensem
ble

Activity CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Snack 0.00 0.00 0.00 0.00 0.28 0.39 0.00 0.00 0.00 0.00 0.00 0.27 0.42 0.01

Showering 0.36 0.48 0.43 0.47 0.70 0.70 0.51 0.79 0.81 0.82 0.81 0.89 f0.89 0.82

Grooming 0.00 0.00 0.00 0.00 0.25 0.28 0.12 0.55 0.53 0.54 0.55 0.56 0.57 0.57

Breakfast 0.61 0.67 0.65 0.68 0.71 0.73 0.38 0.71 0.72 0.76 0.74 0.73 0.77 0.67

Toileting 0.00 0.00 0.00 0.00 0.31 0.37 0.17 0.00 0.00 0.00 0.00 0.28 0.29 0.17

Lunch 0.75 0.80 0.81 0.82 0.80 0.84 0.64 0.81 0.80 0.82 0.85 0.86 0.86 0.81

Leaving 0.76 0.86 0.75 0.83 0.88 0.89 0.83 0.85 0.86 0.86 0.86 0.87 0.87 0.84

Sleeping 0.96 0.96 0.96 0.96 0.92 0.90 0.92 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Spare Time0.91 0.91 0.90 0.91 0.92 0.93 0.76 0.98 0.98 0.98 0.98 0.99 0.99 0.98

Average 0.44 0.48 0.46 0.47 0.63 0.67 0.48 0.60 0.62 0.62 0.63 0.71 0.73 0.65
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Table 3.5: F1-score Home B

FTWs ESTWs

Imbalanced
data

Cost-
Sensitive

SMOTE

Ensem
ble

Imbalanced
data

Cost-
Sensitive

SMOTE

Ensem
ble

Activity CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Dinner 0.00 0.00 0.00 0.00 0.31 0.34 0.06 0.00 0.01 0.00 0.00 0.26 0.27 0.13

Snack 0.00 0.00 0.02 0.08 0.27 0.29 0.22 0.00 0.00 0.00 0.00 0.26 0.28 0.07

Showering 0.0 0 0.22 0.00 0.21 0.26 0.36 0.24 0.73 0.80 0.71 0.79 0.82 0.84 0.53

Grooming 0.13 0.30 0.09 0.30 0.39 0.36 0.42 0.62 0.61 0.61 0.61 0.64 0.65 0.54

Breakfast 0.50 0.47 0.51 0.51 0.52 0.58 0.36 0.26 0.23 0.24 0.19 0.30 0.35 0.29

Toileting 0.00 0.00 0.00 0.00 0.31 0.32 0.32 0.23 0.04 0.23 0.10 0.26 0.27 0.14

Lunch 0.39 0.35 0.31 0.38 0.41 0.42 0.37 0.00 0.00 0.00 0.00 0.36 0.38 0.00

Leaving 0.90 0.90 0.89 0.89 0.90 0.90 0.84 0.66 0.66 0.66 0.66 0.66 0.66 0.66

Sleeping 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Spare Time0.83 0.82 0.84 0.84 0.85 0.86 0.79 0.90 0.90 0.90 0.90 0.89 0.90 0.90

Average 0.33 0.36 0.36 0.41 0.51 0.54 0.45 0.40 0.40 0.40 0.40 0.54 0.56 0.42

The results also show the majority classes which are Leaving and Spare-Time
activities (except Sleeping) which are also improved based on both approaches of ex-
tracting features for both models using the SMOTE method. The average results of
the LSTM and CNN for all activities are improved using the SMOTE method based
on both FTWs and ESTWs. Regarding home B, the F1-score of the minority classes
(Breakfast, Grooming, Lunch, Showering, Toileting, Snack, and Dinner) are consid-
erably improved which are shown in the table 3.5. Moreover, only the results of the
Spare-Time as the majority classes are improved based on FTWs. The average results
of home B indicate that the SMOTE method substantially improved the recognition,
particularly for the minority classes. The F1-scores in tables 3.4 and 3.5 indicate that
the results of the models based on both feature extraction approaches using SMOTE
are better (higher F1-score) than the results of models based on Cost-Sensitive and
class imbalanced datasets. Moreover, the F1-score results based on SMOTE with ES-
TWs can be seen to be higher than F1-scores based on SMOTE with FTWs from
both homes of both models on average. Moreover, the obtained results based on the
SMOTE technique with both feature extraction method (FTW and ESTW) and with
both temporal models (LSTM and CNN) are better than the results obtained by bal-
anced ensemble learning as shown in tables 3.4 and 3.5. Therefore, the proposed data
level solution (SMOTE and ESTWs) to handle imbalanced human activities from
smart homes is more promising than algorithms level (Cost-sensitive and Ensemble
learning).



Chapter 4
Conclusion and Future work

The t-SNE mapping stability of human activity patterns in smart homes via the anal-
ysis of reproducibility of low-dimensional manifolds is investigated. One could claim
that any two data sets could be aligned via a non-linear mapping function with enough
degrees of freedom. However, this study aims at analyzing parts of a map in order to
investigate the stability of t-SNE. Therefore, the choice of linear and local trans-
formations gives human intuition about the stability of t-SNE. Procrustes Analysis
(PA) is used for linearly aligning low-dimensional manifolds in order to compute dis-
parity and correct correspondence observation within the five nearest neighbors. An
extension to Local Procrustes Analysis called Normalized Local Procrustes Analysis
(NLPA) is proposed to non-linearly align manifolds by using locally linear mappings.
Experiments show that the disparity from using NLPA decreases by magnitudes com-
pared to the disparity from using PA. Also, the probabilities of obtaining the correct
corresponding observation within the five nearest neighbors from the second set of
data points for each point in the first set of data points are radically increased by
using NLPA compared to PA. For instance when the t-SNE parameter is 20, the dis-
parity mean value decreases from 0.2913 in the case of using PA to a mere 0.00066
upon using NLPA. The probability of obtaining the correct corresponding observa-
tion within the five nearest neighbors for the same comparison, increases from 60.37
when using PA to 98.45 in case of using NLPA. In conclusion, NLPA outperforms
PA by providing much better alignments for the low-dimensional manifolds on the
same data set. This indicates that t-SNE low-dimensional manifolds are locally stable
which is the part of the achievements of this research project.

Since, human activity recognition is a highly dynamic and challenging research
field that plays a crucial role in diverse applications such as health care, elderly care,
emergencies, security, smart environments, surveillance and context-aware-systems,
a novel method is proposed to improve understanding of human activity recognition.
The method is a new data-driven approach that aims to increase precision and sen-
sitivity for human activity recognition systems from smart home environment. The
proposed method considers the partial oncoming sensor activations in addition to pre-
ceding sensor activations. With the use of oncoming sensor activation, we can take the
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benefits of enhancing the learning process that leads to improved recognition perfor-
mance compared with the approaches using only the preceding sensor activations in
the intelligent environment. Multiple and incremental fuzzy temporal windows were
used to extract features from both preceding and partial oncoming sensor activations.
Defining multiple and incremental fuzzy temporal windows from long-term to short-
term has provided suitable semantics to determine a sequence of temporal features
that boosts learning using LSTM sequence models and CNN.

Further, one of the main problem of home-bases systems activity recognition is
the frequency and duration of human activities are intrinsically imbalanced. The huge
difference in the number of observations for the classes to learn will make many ma-
chine learning algorithms to focus on the classification of the majority examples due
to its increased prior probability while ignoring or misclassifying minority examples.
In this research project, SMOTE, and cost-sensitive learning are applied to temporal
models and compared with ensemble learning to handle the class imbalance problem
as well as to study the relation to two data pre-processing methods. Experiments show
that f-measures of the minority classes are increased when using SMOTE with both
temporal models (LSTM and CNN) and based on both ways of extracting features
(FTWs and ESTWs). For example, the recognition measurement of the Snack and
Dinner as one of the minority classes is notably improved in both homes, using both
models and based on both feature extraction methods. The experimental results indi-
cate that handling imbalanced data is more important than selecting machine learning
algorithms and improves classification performance. Moreover, handling imbalanced
class problem from data level using SMOTE and ESTWs for these activity datasets
outperforms the algorithm level.

Figure 4.1 shows a framework for AR systems based on the above integrated
results. Firstly, the multiple incremental FTWs technique is applied to generate the
input dataset. Then SMOTE is applied to handle the imbalanced class problem of
human activities and to generate a balanced dataset. However, SMOTE in gener-
ating synthetic samples does not consider neighbouring samples that can be from
other classes. This can introduce additional noise and can increase the overlapping of
classes. To address this limitation, we compute K nearest neighbours of each gener-
ated synthetic sample to make sure the generated samples are correctly labelled. The
generated sample for each of the minority classes with the K nearest neighbours must
have the same class. For instance, generated synthetic samples of Snack activity must
have K Snack activity as nearest neighbors. Over-sampling with accurate labelling
technique is used to minimize the focus of the proposed network on learning only the
majority activities or partially neglect the minority activities. The balanced dataset is
fed into the proposed delayed temporal models i.e. LSTM and 1D CNN to accurately
classify human activities.

For future work, firstly, we will explore extensions of NLPA for aligning low-
dimensional manifolds of disparate data sets. Then t-SNE low-dimensional manifolds
of disparate data sets will be compared using NLPA to discover the common mani-
folds of the disparate data sets to be used for Transfer learning.
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Apply multiple  incremental  fuzzy temporal windows 
to generate input data

Handling imbalanced data using SMOTE        
(compute K nearest neighbors of each generated data point to 

correctly label the generated data point)

Data

Apply delayed temporal models 

Figure 4.1: Framework for AR

Secondly, future work will explore a newly proposed approach to handle the im-
balanced class problem by integrating SMOTE with weak supervision. This approach
will use SMOTE only to generate observations from minority classes and use weak
supervision to correctly and properly label the new observations. The idea is designed
to target the challenge of correctly labeling samples created in an over-sampling con-
text.

Finally, this project mainly will work on boosting learning across different smart
homes aiming to perform robust recognition of dangerous situations and detect behav-
ior deviations in order to enhance elderly-care alert systems. This will be conducted
by transferring knowledge over different smart homes in terms of layout, resident and
sensor configuration.
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I. ABSTRACT

Health technological systems learning from and reacting
on how humans behave in sensor equipped environments
are today being commercialized. These systems rely on the
assumptions that training data and testing data share the
same feature space, and residing from the same underlying
distribution - which is commonly unrealistic in real-world
applications. Instead, the use of transfer learning could be
considered. In order to transfer knowledge between a source
and a target domain these should be mapped to a common
latent feature space. In this work, the dimensionality reduction
algorithm t-SNE is used to map data to a similar feature space
and is further investigated through a proposed novel analysis
of output stability. The proposed analysis, Normalized Linear
Procrustes Analysis (NLPA) extends the existing Procrustes
and Local Procrustes algorithms for aligning manifolds. The
methods are tested on data reflecting human behaviour patterns
from data collected in a smart home environment. Results
show high partial output stability for the t-SNE algorithm for
the tested input data for which NLPA is able to detect clusters
which are individually aligned and compared. The results
highlight the importance of understanding output stability
before incorporating dimensionality reduction algorithms into
further computation, e.g. for transfer learning.

II. INTRODUCTION

Exploratory data analysis based on all available dimen-
sions of a high-dimensional data set (HDD) is generally
intractable. The underlying manifold structure could have a
low intrinsic dimensionality and is therefore often explored
using dimensionality reduction (DR) techniques. The intrin-
sic dimensionality of an HDD could be considered as the
minimum number of parameters needed for explaining the
observed properties of the data. Moreover, such parameters
could preserve both global and local structure of the HDD
in the lower-dimensional representative space [28]. Principal
Component Analysis (PCA) [9] and multidimensional scaling
(MDS) [30] techniques that linearly map an HDD into a lower
dimensional representation are broadly used in business and
marketing applications for DR and data visualization. PCA
and MDS compute low-dimensional maps where dissimilar
data points are far apart. However, keeping similar data
points close together in a low-dimensional map is crucial for

an HDD that lies on or near a low-dimensional manifold,
which is often difficult using linear mapping techniques [19].
Therefore PCA and MDS are not suitable for many complex
and non-linear datasets [12]. Instead, a popular non-linear DR
algorithm is the t-distributed Stochastic Neighbor Embedding
(t-SNE) [19] commonly known for producing low-dimensional
representations of the input data [5], [22] presumably close
to the sought real low-dimensional manifold. In contrast to
PCA and MDS, t-SNE as a non-linear DR method has the
ability to cope with complex data sets that are likely to lie on
a low-dimensional non-linear manifold [4]. t-SNE works in
an unsupervised fashion, can utilize any distance metric and
commonly adapts to both sparse and dense input data [16],
better than ISOMAP [29] and kernel-PCA as it seems [27].
Algorithms for manifold learning, such as t-SNE are used
across a broad range of information processing applications
including immunology [3], and data compression [32].

Commonly many DR algorithms such as t-SNE are used for
visualization of HDD data [23] or for further data processing
such as when modelling of human activity patterns [18] by
mapping data to a low-dimensional representation. A suitable
representation of how, when and where humans performing
activities in their own home opens up for various health
technology applications such as systems for anomaly detection
(e.g. falls) or tracking progression of diseases (e.g. early-
warning of dementia). In this paper, data from a sensor
equipped smart home is used.

Although t-SNE is presented to be a suitable method for
data visualization, t-SNE has a few potential weaknesses [19].
One is the uncertainty of convergence. Due to the non-convex
cost function there is no guarantee that the mapped output
results are similar even for different runs of the algorithm
given identical input data, especially since the initialization of
the map points is randomized. Despite the non-deterministic
setup of the algorithm, the visual interpretation of different
runs is easily compared by humans and far more simple to
perform than automatic machine-based comparisons which
are necessary for accurate evaluation of the algorithm. The
primary problem studied in this work is how to analyze
the stability of the t-SNE algorithm output. The proposed
approach utilizes comparisons of several output maps as a
whole and partially by clustered low-dimensional data points.
This is performed by using smart home data of human activity
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patterns as input data.
Learned manifolds can be aligned to build a correspondence

between different disparate data sets and thereby provide
knowledge transfer across the data sets from different do-
mains [34]. Accordingly, knowledge transfer using machine
learning (i.e. transfer learning), is gained during the transition
from one learned domain to another, aiming to improve
learning in the target task by leveraging knowledge from
the source task [31]. In our work, it is hypothesized that
learned manifolds (by a data-driven model such as t-SNE)
from disparate data sets could be used for transfer learning.
Therefore, it is crucial to investigate the stability of t-SNE
output in order to use this algorithm further for aligning
manifolds for the purpose of transfer learning.

Random Forests (RF) are commonly used as a one-class
classifier, e.g. in order to model human behaviour patterns in
an unsupervised fashion from sensor data collected in a smart
home environment [18]. Then the proximity matrix from RF
from such a model is fed to the t-SNE algorithm in order
to map human behaviour patterns to a lower dimensional
manifold. However, since t-SNE is a stochastic algorithm and
since there is a large variance of t-SNE maps, a thorough
analysis of the stability is required before applying TL.

The contribution of this work is the development of methods
and tools for studying t-SNE output stability on smart home
data used for modelling human activity patterns. The long-
term goal of this research is to achieve automatic knowledge
transfer between related data sets from different smart homes
using manifold comparisons.

The rest of the paper is organized as follows. In Section
2, related work will be described and in Section 3, methods
for testing stability of t-SNE for different runs is proposed. In
Section 4, experiment results will be presented and discussed.
Finally, the findings and opportunities of further research will
be summarized in Section 5, Conclusions.

III. RELATED WORK

Dimensionality reduction techniques have been widely used
in many application domains to map HDD onto a low-
dimensional manifold in order to produce a meaningful and
visualizable representation. In [34] manifold alignment are
used to construct connections (low-dimensional mappings)
between different but related data sets by aligning their un-
derlying learned manifolds for transferring knowledge across
the data sets. Several comparative studies outlining the various
DR techniques have been addressed in the literature [32],
[33], [14]. In various research studies a set of quality as-
sessment criteria has been considered based on local and
global geometry preservation concepts [21], [7], [35]. How-
ever, these studies are mostly based on artificial data sets and
the assessment of ability to find a good representation often
relies on visual interpretation. To our knowledge an exhaustive
empirical investigation analysis of the stability of non-linear
DR techniques has not been carried out. Moreover, several
studies have been done for investigating the performance of

the non-linear DR methods in artificial and real tasks [2], [15],
[24].

The stability of unsupervised DR techniques was studied by
Garcia et. al who studied the parameter and data variations
on several artificial data sets [5]. The study concluded by
visual inspection that parameter variations in the resulting
embeddings did not render instability.

Moreover, Laplacian Eigenmaps (LE) and Local Linear
Embedding (LLE) were tested for stability when small or
minor parameter variations which led to the conclusion that
local methods (LE and LLE) are more likely to be affected by
small modifications in parameter variations and therefore less
stable than t-SNE.

Khoder et al performed a comparative study [11] to inves-
tigate the stability of unsupervised dimensionality reduction
techniques using perturbed data of large images. The authors
presented a new method for measuring the stability of non-
linear and linear methods based on the noise variance at
various scales. Results showed that PCA and MDS are limited
by their linear character or are difficult to use when working
on HDD because of their complexity.

A method for comparing DR techniques in terms of loss of
quality with the aim to preserve the geometry of data sets has
also been proposed [6]. Results revealed that the best results
on all data sets are obtained by t-SNE.

Moreover, the accuracy of non-linear DR methods has been
under review using real and synthetic data sets [32]. The
experiment results show that non-linear DR methods perform
well on the preferred synthetic data set, while this strong
performance is not proved to extend to the real data sets.

Consequently, to the best of our knowledge, the stability
analysis of t-SNE using manifold alignment on partial data
points in the output maps has not be attempted before. Sta-
bility of low-dimensional manifolds plays a key role to align
manifolds properly for the purpose of transfer learning. Thus,
the contribution of this paper is important for transferring
knowledge in a multi-smart home environment based on
aligning manifolds.

IV. METHODS & PROPOSED APPROACH

To measure the stability of t-SNE output an approach
based on partially aligning t-SNE maps is proposed. The
following steps (see Algorithm 1) constitutes the method
for computing stability measures for a set of t-SNE maps.
Firstly, T maps are produced by repeatedly computing t-SNE
output maps with random initialization of low-dimensional
data points given identical HDD input, X (see lines 2-
4). Secondly, the resulting maps are pair-wise aligned into
a modified target space, creating T 2 alignments (where
1
2T 2 − T are unique alignments due to the commutativ-
ity of the align operator: align(map list[i], map list[j]) =
align(map list[j], map list[i]). The variability of these align-
ments is then evaluated by two measures of point-cloud
alignment: mean disparity (dij , where disparity is the sum of
squared pair-wise differences between observations) and the

1840



estimated mean probability of obtaining the true corresponding
data point within the aligned five nearest neighbors, p5NN.

Algorithm 1 Compute t-SNE output stability

1: Input: HDD, X
2: for i ← 0 to T do
3: map list ← compute tSNE(X)
4: end for
5: for i ← 0 to T do
6: for j ← 0 to T do
7: (ami, amj) ← align(map list[i], map list[j])
8: p5NN

ij ← prob 5NN(ami, amj)
9: dij ← disparity(ami, amj)

10: end for
11: end for
12: Output: p5NN, dij

Besides giving an explanation of the t-SNE algorithm this
section describes three different methods of alignment: Pro-
crustes Analysis (PA), Local Procrustes Analysis (LPA) and
the proposed extension Normalized Local Procrustes Analysis
(NLPA).

A. t-SNE

t-SNE, introduced by van der Maaten and Hinton [19], is a
nonlinear dimensionality reduction algorithm that maps high-
dimensional data-points into a lower dimensional space. t-SNE
utilizes embedding, which is constructed such that data-points
in the vicinity of each other (i.e. similar data-points) in a high-
dimensional space will remain in the vicinity by embed-points
in a lower-dimensional space. Mainly, the t-SNE technique
consists of two phases. Firstly, a joint probability over pairs
of the data-points will be computed so that similar data points
from the original (high-dimensional) data set have a large
probability of being picked by each other for the embedding
space. This results in dissimilar data-points to having a smaller
probability of being picked. Accordingly, t-SNE is preserving
the local geometry of the original high-dimensional data [19].
Secondly, over the map-points a probability distribution will be
determined by t-SNE that fits data-point positions in the map
in order to minimize the Kullback-Leibler divergence between
both high and low dimensional distributions. Furthermore,
t-SNE algorithm has originated from Stochastic neighbor
Embedding (SNE) [8] and aimed to alleviate the main SNE
challenges related to the thin tails of the normal distribution
resulting in a data representation where even dissimilar data-
points are crushed together which is known as the crowding
problem [19]. t-SNE use a heavy-tailed distribution (Student-
t distribution) to compute the similarity between two points.
Moreover a symmetric version of the SNE cost function is
implemented by t-SNE with simpler gradients.

B. Aligning by Procrustes Analysis

PA is one of the most popular rigid shape analysis algo-
rithms. PA applies translation, scaling and rotation to two
identically sized data sets in a multivariate Euclidean space to

Fig. 1: t-SNE map for human behaviour patterns data

find the optimal alignment and to minimize the disparity [25].
Algorithm 2 shows the PA process. Firstly, PA translates the
data sets to their origin. Secondly, PA normalizes the data
sets using the Frobenius norm. Finally, PA rotates the second
dataset to fit the first dataset in order to minimize the disparity.
In this work PA is used to align the two-dimensional manifolds
of the smart home dataset produced by t-SNE. PA performs
well for data sets which are linear transformations of each
other. However, PA works poorly on aligning non-linear smart
home maps produced by t-SNE.

Algorithm 2 Procrustes Analysis (PA)

1: Input: M1, M2 M1, M2 are the input t-SNE maps
2: M1 ← M1 − μ(M1)
3: M2 ← M2 − μ(M2) translate both data sets to their origin
4: M1 ← M1 / ‖M1‖F scaling of M1 and M2

5: M2 ← M2 / ‖M2‖F where ‖ · ‖F denotes Frobenius norm
6: M2 ← Rotation (M1, M2)

rotation M2 with respect to M1 to minimize disparity
7: disparity ←∑n

i=0 (M1i −M2i)
2

measure the dissimilarity between the two data sets
8: Output: M1, M2, disparity, ‖M1‖F , ‖M2‖F , μ(M1)

C. Aligning by Local Procrustes Analysis

LPA was introduced by [20] to non-linearly align manifolds
by using locally linear mappings. This algorithm comprises
two main steps. Firstly, it follows a divisive approach to cluster
datasets. The algorithm starts by considering a cluster of all
data points and keeps on splitting into two sub-clusters recur-
sively and terminates if the diversity of a cluster is below a
predetermined threshold. Secondly, at each stage PA is applied
to all clusters in the first data set and the corresponding cluster
in the second dataset to compute disparity. If the disparity falls
short of the threshold, the clustering process stops for these
clusters at this stage. LPA uses K-means to create clusters.
K-means is a non-deterministic algorithm that gives different
results for different runs in terms of number of data points
in each cluster and centroids location. For the analysis in
this paper, K-means is replaced by a deterministic clustering
algorithm, hierarchical agglomerative clustering, that plays a
significant role in having a proper stability investigation of the
t-SNE which is a non-deterministic algorithm. Figure 2 shows
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the process of clustering data. At initialization, each point
cloud (which in this paper is the t-SNE map) is assigned to one
cluster and the disparity of Procrustes Analysis is computed for
the entire two maps. If the disparity is greater than a threshold,
then the cluster will be divided into two sub-clusters if both
clusters have at least two data points each. For this work, this
condition has been modified to make sure that there are at
least two distinct data points in order to meet the criteria of
applying PA. This process will be applied to the sub-clusters
for better manifold alignment with respect to disparity. Cluster
alignments that offer a disparity lower than the threshold will
not be further clustered. It is worth noting that disparities of
LPA and PA cannot be fairly compared. This is due to the fact
that the space of the data-clusters for the LPA and the space
of the entire dataset for PA are in normalized for each cluster
and map respectively.

For instance, ten disparities will be obtained if ten data-
clusters in the first low-dimensional dataset are compared with
their corresponding data-clusters in the second dataset. On the
other hand, only one disparity will be obtained by applying
PA on the two low dimensional dataset. Therefore, it is not
reasonable to compare the disparities obtained using the PA
and LPA. In this paper LPA is only applied to create clusters.
In the next section, we propose an extension for the LPA in
order to have the same space with the PA for the sake of the
disparity comparison.

Fig. 2: Clustering data using LPA, this is from Halmstad Intelligent
Home [17].

D. Aligning by Normalized Local Procrustes Analysis

In this work, LPA is used for creating clusters of t-SNE low-
dimensional maps. We propose an extension to LPA which we
call Normalized Local Procrustes Analysis (NLPA) in order
to compare locally aligned clusters alignments to a complete
map, which can be compared to PA as well as being used for
stability analysis. Algorithm 3 shows the NLPA procedure.
NLPA applies PA on each cluster and then normalizes the
clusters so that the transformed data-points in each cluster are
mapped back to the original space of the data after alignment.

Algorithm 3 Normalized Local Procrustes Analysis (NLPA)

1: Input: M1, M2 M1,M2 are the input t-SNE maps
2: nc ← n number of clusters created using LPA
3: for i ← 0 to nc do
4: {M1,M2,−, norm1, norm2, μ(M1)} ← PA(M1,M2)

call PA from Algorithm 2
5: M1 ←M1 · norm1 + μ(M1)
6: M2 ←M2 · norm2 + μ(M1)
7: templist1 ←M1

8: templist2 ←M2

9: end for
10: Map1 ← templist1
11: Map2 ← templist2
12: disparity ←∑n

i=0

(
Map1,i −Map2,i

)2
dissimilarity between the two sets

13: Output: disparity

Normalization is done by multiplying the clusters with the
norms of the aligned clusters that are produced by PA and
then adding the mean of the first cluster, as shown in lines 5-
6 of Algorithm 3. This normalization allocates the combined
clusters of data-points to the same space as to original data.
Finally, NLPA computes the disparity and estimated mean
probability of obtaining the true corresponding data point
within the aligned five nearest neighbors for the combined
aligned clusters.

The changes of the proposed method NLPA compared to
the LPA procedure can be summarized

1) Modification: Firstly the clustering algorithm is modified
from k-means to agglomerative clustering.

2) Improvement: Secondly the creating clustering criteria
is improved to have two distinct data points in each
cluster and the threshold is minimized to render better
alignment.

3) Extension: Finally, the NLPA is extended on LPA
to normalize the transformed clusters in order to the
combined clusters with NLPA and the whole dataset
with PA have a same space.

V. EXPERIMENTAL SETUP

A. Data

Data from Halmstad Intelligent Home [17] (HINT) was
acquired for this work. HINT is a sensor-equipped home
able to capture occupancy, movement, and interactions. In
this home, 8 activities were performed by 11 individuals. The
data were generated by an incoming stream of binary events
from 37 sensors of the home. The events are represented
by a particular ID of the triggered sensor, the associated
binary state, and a time-stamp of when the event occurred.
The observations of the data set are equal to the number of
time windows over the measurement time period for the 11
individuals (310 observations). One observation (over a time
window of 30 seconds) holds R number of features where R
is equal to the time resolution (1 second) within a moving
window times the number of events. The data pre-processing
also involves a convolution over time in order to create a
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memory between sensor interactions over time (a process
which has been demonstrated to be successful when modelling
human behaviour [18]. Moreover are the observations being
fed to a Random Forest which discriminates between the
observations class and a class randomized from the data itself
to train a one-class classifier. At last, the proximity matrix
is extracted from the forests (a detailed explanation of the
process can be found in [18]) and used as input for the t-SNE
stability analysis.

Fig 1 is an example of a low-dimensional representation of
human activities computed using t-SNE. The numbers in Fig 1
indicate the following activities 1. go to bed 2. use bathroom
3. prepare breakfast 4. leave house 5. get cold drink 6. office
7. get hot drink 8. prepare dinner.

B. Measurements & Parameter selection

To have an exhaustive analysis of the stability of the t-
SNE, 100 low-dimensional data are mapped using 10 different
configurations of t-SNE. Each configuration of t-SNE has a
specific value of the t-SNE perplexity parameter from a set
of numbers which are 5, 10, 15, 20, 25, 30, 35, 40, 45,
50 as a typical value between 5 and 50 recommended in
the original paper of the t-SNE [19]. The default perplexity
parameter is 20. The perplexity parameter controls how far to
look for neighbors around a data-point and is related to the
width of the t-distribution used in t-SNE. Each t-SNE map
is compared with the rest maps for each t-NSE configuration
to compute disparity and probability of obtaining the correct
correspondences observation within five nearest neighbors for
the transformed data by PA and NLPA. Therefore, 10000
comparisons are conducted in the experiments for each t-SNE
configuration. Figure 3 shows the experiments procedure of
the t-SNE stability analysis. Lastly, PA and NLPA are applied
on the low dimensional manifolds to compute disparities. The
experimental results show that the smaller disparity threshold
renders better results. Therefore, the threshold is decreased
from 0.001 of LPA to 0.00001 for NLPA. Besides, for every
point in the first input dataset, the correct correspondence
observation is found within five nearest neighbors in the
second input dataset to compute the probability of obtaining
the correct correspondence observation within five nearest
neighbors.

VI. RESULTS & DISCUSSION

Recently, t-SNE stability has gained a lot of interest for
projecting high-dimensional data into a low-dimensional man-
ifold with the aim of transferring knowledge using manifold
alignment. However, since t-SNE is a stochastic algorithm and
since there is a large variance of t-SNE maps, a thorough
analysis of the stability is required before applying TL.

Exhaustive scenarios are considered for an investigation
about the t-SNE stability through manifold alignment using PA
and NLPA. Table I shows the estimated disparity and prob-
ability of obtaining the correct correspondence observation
within five nearest neighbors of the PA and the NLPA methods
respectively for different values of perplexity. It turns out that

Fig. 3: Experiments process, ambient sensing home is from Halmstad Intelli-
gent Home [17].

TABLE I: Estimated expected disparity and estimated probability of obtaining
the correspondence observation within five nearest neighbors. After each
estimate the standard error is given.

Pe
rp

le
xi

ty

Disparity
Probability of obtaining

the correspondence within
the 5 nearest neighbors %

Mean (SE)
PA NLPA PA NLPA

5 0.5954 (0.0206) 0.0010 (0.0002) 7.363 (0.0074) 98.541 (0.0099)
10 0.3135 (0.0248) 0.0006 (0.0001) 24.527 (0.0226) 98.541 (0.0099)
15 0.1097 (0.0167) 0.0007 (0.0001) 44.618 (0.0235) 98.476 (0.0099)
20 0.0291 (0.0022) 0.0006 (0.0001) 60.365 (0.0163) 98.450 (0.0099)
25 0.0296 (0.0026) 0.0007 (0.0001) 63.873 (0.0189) 98.485 (0.0099)
30 0.0447 (0.0058) 0.0009 (0.0002) 56.693 (0.0261) 98.435 (0.0099)
35 0.1483 (0.0152) 0.0029 (0.0005) 28.216 (0.0241) 98.126 (0.0098)
40 0.1648 (0.0129) 0.0046 (0.0006) 26.186 (0.0223) 97.869 (0.0098)
45 0.1699 (0.0123) 0.0049 (0.0006) 31.522 (0.0256) 97.637 (0.0098)
50 0.1501 (0.0116) 0.0056 (0.0006) 38.485 (0.0296) 97.744 (0.0098)

for all perplexity values considered the disparity values from
using NLPA are less than 4% of the corresponding disparity
value from using PA. In other words, the NLPA method is 25
times better than the PA method in terms of disparity. Also,
the disparity from using PA decreases slightly for perplexity
ranging from 5 to 20 while it increases for perplexity values
from 25 to 50. The disparity values from using NLPA increases
almost monotonically for all perplexity values considered.

With respect to the probability of obtaining the correct
correspondence within the five nearest neighbors, the PA
correct correspondence mean values commonly increase by
increasing perplexity, especially as the perplexity value reaches
25. On the other hand, the probability of obtaining correspon-
dence within the five nearest neighbors slightly decreases by
increasing perplexity ranging from 5 to 50 for NLPA.

Figure 6 shows PA and NLPA histograms of disparity
and probability of obtaining the correct correspondence ob-
servation within the five nearest neighbors where perplexity
equals 20. Both the table and the histograms show that NLPA
consistently outperforms PA for all t-SNE configurations, see
Figures 4 and 5 respectively. Based on these results, it is
concluded that t-SNE maps are stable locally for human
behavior data that reflects the indicated property of t-SNE and
which preserves local structure of data. Figure 7 shows the
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alignment of t-SNE maps that has been used to investigate
the t-SNE stability using PA and NLPA. The alignment maps
in Figure 7 indicate that the t-SNE maps are stable locally
compared to globally aligned t-SNE maps using PA.

Fig. 4: PA disparity similarity matrix of size 100 × 100

Fig. 5: NLPA disparity similarity matrix of size 100 × 100

(a) PA (b) NLPA

(c) PA (d) NLPA

Fig. 6: PA and NLPA histograms of disparity and probability of obtaining the
correspondence observation within five nearest neighbors where perplexity is
equal to 20

(a) PA for perplexity 20 (b) NLPA for perplexity 20

(c) PA for perplexity 15 (d) NLPA for perplexity 15

(e) PA for perplexity 35 (f) NLPA for perplexity 35
Fig. 7: Manifold alignment using PA and NLPA for three cases

VII. CONCLUSION

The t-SNE mapping stability of human activity patterns
in smart homes via the analysis of reproducibility of low-
dimensional manifolds is investigated. One could claim that
any two data sets could be aligned via a non-linear mapping
function with enough degrees of freedom. However, this study
aims at analyzing parts ofa map in order to investigate the
stability of t-SNE. Therefore, the choice of linear and local
transformations gives human intuition about the stability of
t-SNE. Procrustes Analysis (PA) is used for linearly aligning
low-dimensional manifolds in order to compute disparity and
correct correspondence observation within the five nearest
neighbors. An extension to Local Procrustes Analysis called
Normalized Local Procrustes Analysis (NLPA) is proposed to
non-linearly align manifolds by using locally linear mappings.
Experiments show that the disparity from using NLPA de-
creases by magnitudes compared to the disparity from using
PA. Also, the probabilities of obtaining the correct correspond-
ing observation within the five nearest neighbors from the
second set of data points for each point in the first set of
data points are radically increased by using NLPA compared to
PA. For instance when the t-SNE parameter is 20, the disparity
mean value decreases from 0.2913 in the case of using PA to a
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mere 0.00066 upon using NLPA. The probability of obtaining
the correct corresponding observation within the five nearest
neighbors for the same comparison, increases from 60.37 when
using PA to 98.45 in case of using NLPA. In conclusion, NLPA
outperforms PA by providing much better alignments for the
low-dimensional manifolds on the same data set. This indicates
that t-SNE low-dimensional manifolds are locally stable which
is the main achievement of this study.

Future work will explore extensions of NLPA for aligning
low-dimensional manifolds of disparate data sets. Then t-
SNE low-dimensional manifolds of disparate data sets will
be compared using NLPA to discover the common manifolds
of the disparate data sets to be used for Transfer learning.
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Efficient Activity Recognition in Smart Homes
Using Delayed Fuzzy Temporal Windows

on Binary Sensors
Rebeen Ali Hamad , Alberto Salguero Hidalgo , Mohamed-Rafik Bouguelia,

Macarena Espinilla Estevez , and Javier Medina Quero

Abstract—Human activity recognition has become an ac-
tive research field over the past few years due to its wide ap-
plication in various fields such as health-care, smart home
monitoring, and surveillance. Existing approaches for ac-
tivity recognition in smart homes have achieved promising
results. Most of these approaches evaluate real-time
recognition of activities using only sensor activations that
precede the evaluation time (where the decision is made).
However, in several critical situations, such as diagnosing
people with dementia, “preceding sensor activations”
are not always sufficient to accurately recognize the
inhabitant’s daily activities in each evaluated time. To
improve performance, we propose a method that delays
the recognition process in order to include some sensor
activations that occur after the point in time where the
decision needs to be made. For this, the proposed method
uses multiple incremental fuzzy temporal windows to
extract features from both preceding and some oncoming
sensor activations. The proposed method is evaluated with
two temporal deep learning models (convolutional neural
network and long short-term memory), on a binary sensor
dataset of real daily living activities. The experimental
evaluation shows that the proposed method achieves
significantly better results than the real-time approach,
and that the representation with fuzzy temporal windows
enhances performance within deep learning models.

Index Terms—Activity recognition, fuzzy temporal win-
dows, deep learning, temporal evaluation.

I. INTRODUCTION

SMART homes make use of distributed sensor networks with
high processing capabilities and low power consumption,

and have the ability to record information about the behavior of
an inhabitant who interacts with the environment [1], [2]. These
environments are made to perceive the user’s context in order
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to help people in their daily living activities and provide smart
solutions to address some of the problems associated with the
growing size of the population [3], [4].

Activity Recognition (AR) in smart homes is an active
research topic as well as a useful means to assess the cir-
cumstances of a person’s daily living. It aims to predict
human activities within the smart environment by continuously
observing a series of actions and environmental conditions. In
the health context, AR plays an important role in assessing the
patient’s condition. Examples of this include the identification
of abnormal behaviours for elderly dementia sufferers [5], and
the early detection of Alzheimer disease [6].

In data-driven AR, an activity model is built by training ma-
chine learning models on sensor data corresponding to various
activities of the inhabitant. Then, a testing stage is carried out to
evaluate the built model on a stream of sensor activations [7].
In particular, binary sensors are deemed to be one of the use-
ful means for unobtrusive monitoring within the home environ-
ment. One of the advantages of such data-driven AR approaches
consists in the capability of handling uncertainty and temporal
information. Among these approaches, Deep Learning methods
have been used for activity recognition, and evaluated on binary
sensors [8] by using Convolutional Neural Networks (CNN)
[9] and Long Short-Term Memories (LSTM) [10].

Existing approaches for activity recognition in smart homes
perform predictions in real time based on sensor activations that
precede the evaluation time. Due to only relying on previous
activations, such real-time approaches may lack precision in
recognizing some daily life activities. To overcome this prob-
lem, it becomes necessary to know which sensor activations are
generated later, since the activity to be recognized will depend
on the subsequent sensors. In order to illustrate the limitation of
the real-time approaches for activity recognition, let’s consider
the following two scenarios. In the first scenario, if a binary sen-
sor deployed on the front door generates an open activation, the
real-time approach will recognize the activity as “the inhabitant
has left the house”. However, it can happen that the inhabitant
opens the main door only to talk to another person in the entrance
of the house and returns to the house again without leaving it.
In this scenario, it is important to consider the activations gen-
erated after opening the door. Indeed, if nothing happens after a
short time (e.g., two minutes), then the inhabitant has performed
the activity “leaving the house”; however, if sensor activations

2168-2194 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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are generated during the next two minutes after opening the
door, then the inhabitant has only opened the door without leav-
ing the house. The second scenario that illustrates the problem
of real-time activity recognition approaches is as follows. An
inhabitant goes to the kitchen and opens the refrigerator. Until
this action is followed up with interactions with other objects
(and therefore the activation of other sensors) it is not possible
to recognize exactly whether the inhabitant has gone to open
the refrigerator to have a snack and eat, or to perform some
other activity, for example, to take out certain products from
the refrigerator for cooking. Therefore, the accuracy of a real-
time (or online) activity recognition approach is confronted with
the use of oncoming sensor activations with a slight delay.

Although real-time approaches enable permanent interaction
with users in smart environments, it has a lower recognition rate
[11], [12]. This is not admissible in some critical cases such
as diagnosing dementia, as it requires more accurate activity
recognition to correctly detect abnormal behaviours in the in-
habitant, [13]. These cases, although less frequent, prevent AR
from being a high-precision tool for assessing the conditions of
inhabitants in smart homes.

The contribution of this paper takes the above-mentioned
issues into consideration. We propose a data-driven approach
that aims to increase precision and sensitivity in daily activity
recognition by means of i) delaying the activity recognition,
ii) extracting representations of binary sensor activations that
occur before and after the time where the prediction is made,
iii) evaluating Deep Learning methods for classification, and iv)
analyzing the impact of the delayed AR process on precision
and sensitivity.

The remainder of this paper is structured as follows:
Section II describes previous work in activity recognition related
to our proposal, highlighting the main novelty of the proposed
methodology. Section III presents the proposed methodology
for activity recognition as a high-precision tool. In Section IV,
the proposed methodology is evaluated on a popular dataset with
daily activities developed in a real smart environment [4]. Fi-
nally, a conclusion and future works are proposed in Section V.

II. RELATED WORKS

Activity recognition based on the use of binary sensors is a
useful approach to evaluate the conditions of daily living within
a sensorized environment in an unobtrusive manner. Binary sen-
sors are small and light devices which are installed in everyday
objects to register human interaction, such as, passive infrared
sensors, motion detectors, contact switches, break-beam sen-
sors, and pressure mats [14]. They have been proposed as suit-
able devices for describing daily human activities within a smart
environment setting. Their main advantages are that they are:
i) easy to install, ii) small in size, iii) low-cost and iv) minimally
invasive in comparison to videos and microphones [15].

The real-time capabilities have become a key challenge in
activity recognition to offer a tool that meets real-world con-
ditions, and enable adequate assistance services which can be
offered within Ambient Assisted Living [16]. Previously, a
combination of human-defined binary sensor features, such as
the last activation within a fixed time period, or the current raw

activation, were proposed as suitable representations in real-time
AR using windowing approaches [17]. In [18], the combina-
tion of multiple and incremental fuzzy temporal windows has
shown an increase in the performance of real-time AR com-
pared to previous binary sensor representations. Most of the
algorithms carry out successful analyses on stored datasets, but
in real time, data should be quickly pre-processed for proper
action to be taken if needed [19]. Using smart home settings,
activity recognition systems attempt to recognize daily routine
activities. [20] recognizes a set of activities such as Breakfast,
Brushing teeth, Drinking, Showering, using machine learning
algorithms including Hidden Markov mode (HMM), condition
random field (CRF), hidden semi-Markov models (HSMM) and
semi-Markov conditional random field (SMCRF). [21] recog-
nizes daily living activities bedtoilet, transition, leaving, eat-
ing, cooking, relaxing, sleeping and working using Naive Bays,
HMM, SVM, CRF, SVMS, which consistently obtains 84%
average weighed accuracy. The increasingly large amounts of
smart home datasets have lead to the use of deep learning
approaches. [22] and [8] applied Long Short Term Memory
(LSTM) on three real world smart home datasets where the
number of activities are 10, 13, 16 for the first, second and third
houses respectively. The results of LSTM outperforms Naive
Bays, HMM, HSMM, CRF in terms of accuracy and perfor-
mance. However, the features of the datasets for the input mod-
els were computed using only equally-sized temporal windows
and the techniques of separating data for training and testing
phases to avoid over-fitting are not described. Moreover, the
accuracy of the individual classes are not computed, rather only
average accuracy of the models is shown and the training time
of each model is not computed. Hence, the recognition of which
activities are improved is not clear.

As explained previously, since real-time activity recognition
approaches use only the preceding sensor activations, they can
perform poorly in recognizing some activities [11]. From an
operational perspective, there are situations where one needs to
achieve higher precision while tolerating a short time delay (i.e.
real time is not necessary). For example, when monitoring a
person with early dementia using binary sensors, it is necessary
to provide high accuracy even if it means introducing a short
delay in recognizing the activity. The proposed data-driven ap-
proach differs from the previously proposed ones by taking into
consideration the aforementioned issues, and aiming to further
increase the precision and sensitivity of the activity recognition
by means of:� Including multiple and incremental fuzzy temporal win-

dows (FTWs) to compute the features from a given sensor
in both preceding activations, as well as oncoming ac-
tivations. In order to avoid the human configuration of
FTWs we have modeled their shapes with the Fibonacci
sequence, which has been defined to model incremental
sequences in a harmonic way under the fields of mathe-
matics, science, and engineering [23].� Evaluating the temporal models using a Deep Learning ap-
proach has presented significant differences compared to
other contexts of activity recognition [24]. Hybrid models
combining CNN and LSTM are evaluated as Deep Learn-
ing architectures. This is compared with other models
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under delayed representation of sensor activations. More-
over, we have evaluated the configuration for LSTM and
CNN described in [8] based on equal-sized temporal win-
dows for extracting features, showing the impact of FTWs
in extracting features to represent suitable long-term per-
formance of sensor activations with a low number of fea-
tures and achieving better F1-score.� Analyzing the impact of delaying the activity recogni-
tion by using oncoming sensor activations in real daily
activities. Specifically, showing the impact of including
oncoming sensor activations in activity recognition to im-
prove the recognition of some rare activities such as leav-
ing, snack, grooming and dinner that have been poorly
recognized using only real-time activity recognition.

Consequently, to the best of our knowledge, including and
evaluating both preceding and oncoming sensor activations for
activity recognition has not been attempted before. Human activ-
ity recognition considering oncoming sensors activation plays a
key role in recognizing activities properly for the purpose of en-
hancing elderly care alert systems. In concrete terms, in building
robust AR for diagnosing patients based on their user activities
in smart homes in a highly accurate way.

III. METHODOLOGY

In order to increase the precision and sensitivity of activity
recognition in smart homes, in this paper we propose a new data-
driven methodology that applies multiple and incremental fuzzy
temporal windows to extract features from both preceding and
partial oncoming sensor activations. This results in a sequence
of temporal features that boosts learning using LSTM sequence
models as well as CNN.

A. Representation of Activities and Binary Sensors

A set of binary sensors is represented by S = {S1 , . . . , S|S |}
whose related set of daily activities is represented by A =
{A1 , . . . , A|A |}, where |S| and |A| are the number of sensors
and daily activities respectively. Each binary sensor and each
daily activity are described by a set of binary activations within
a range of time, defined by a starting and ending point of time
as shown by Eq. (1):

Si = {Si0
, . . . , S|Si |}, Sij

= {S0
ij

, S+
ij

}

Ai = {Ai0
, . . . , A|Ai |}, Aij

= {A0
ij

, A+
ij

}
(1)

where i in |Si | and |Ai | is the total number of activations
for a given binary sensor Si and a daily activity respectively,
and ii) S0

ij
, S+

ij
the starting and ending point of a given time

of activation respectively. Finally, the timeline is determined by
the range of time T = {min(S0

ij
),max(S+

ij
)}.

B. Feature Sequence of Binary Sensors With
Incremental Fuzzy Temporal Windows

In this Section, a binary-sensor representation by means of
multiple and incremental FTWs is described. A FTW describes
a membership degree from a given time t∗ to a point of time

Fig. 1. Activation degree from a FTW Tk and different binary activations
Sij , which is computed as the maximal degree of Tk for each point ti of
time within the sensor activation. Top) No overlapping between Tk and
Sij , middle) partial overlapping between Tk and Sij and bottom) partial
overlapping within support limits of Tk .

ti by means of their temporal distance Δt∗i = t∗ − ti , t
∗ > ti .

In case Δt∗i > 0, we are evaluating a preceding point of time,
and in case Δt∗i < 0 an oncoming point of time. A FTW Tk

is defined by a fuzzy set Tk (Δt∗i ), which is characterized by a
membership function µT̃k

(Δti). In sake of simplicity we note
Tk (Δt∗i ) instead of µT̃k

(Δt∗i ).
In this work, each FTW Tk is described by a fuzzy set char-

acterized with a membership function and its shape corresponds
to a trapezoidal function Tk (Δt∗i )[l1 , l2 , l3 , l4 ]. The well-known
trapezoidal membership functions are defined by a lower limit
l1 , an upper limit l4 , a lower support limit l2 , and an upper
support limit l3 according to Eq. (2):

TS(x)[l1 , l2 , l3 , l4 ] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x ≤ l1

(x − l1)/(l2 − l1) l1 < x < l2

1 l2 ≤ x ≤ l3

(l4 − x)/(l4 − l3) l3 < x < l4

0 l4 ≤ x

(2)

Once a FTW Tk is defined, the activation degree of a binary
activation Sij

from a sensor Si at evaluated time t∗ is computed
by Eq. (3).

Tk (Sij
, t∗) =

{
max(Tk (Δt∗i ))∀ti ∈ Sij

∃ti ∈ [S0
ij

, S+
ij

]

0 otherwise
(3)

So, in order to obtain the degree of the binary activation Sij

within the FTW Tk , we compute the maximal degree of Tk

for each point ti of time within the time interval from sensor
activation.

In Fig. 1, some examples of activation degree from a FTW
Tk and three different binary activations Sij

are shown.
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Next, in order to evaluate a FTW Tk and a sensor Si in
the complete timeline, we aggregate Tk (Si, t

∗) computing the
maximal value in the time-line according to Eq. (4).

Tk (Si, t
∗) = max(Tk (Sij

, t∗)),∀Sij
∈ Si (4)

This representation includes an updated model from previous
works [18], [25], where a fuzzy aggregation of the sensor ac-
tivation in wearable and binary sensors was initially proposed.
In this work, we have simplified and improved the computing
of the activation degree by evaluating the sensor activation and
FTW in a continuous way using Eq. (3). In Fig. 2, a representa-
tion of preceding and oncoming FTWs defined by the Fibonacci
sequence in an sample timeline is shown.

C. Preceding and Oncoming Sensor Activation With
FTWs

In this work multiple and incremental FTWs are defined to
collect i) long-term to short-term temporal sensor activations,
and ii) the preceding and oncoming sensor activations. To do
so, first, the maximal temporal size is defined for evaluating
preceding and oncoming sensor activations, which are defined
by L∗

−; and L∗
+ respectively. We note:� L∗

−; must include a value which determines a wide range
of preceding evaluation of sensors, as it has been demon-
strated that long-term activations of sensors are key to
improve AR [18], [26]. For example, the difference be-
tween some activities carried out in the kitchen, such as
breakfast, lunch, dinner or snack, is determined by the
evaluation of the bed sensor activation in short, middle
and long term. In addition, due to temporal aggregation
with incremental FTWs, defining hours of sensor evalua-
tion are reduced to a short number of features [18]. The
definition of preceding FTWs is determined by Tk (Δt∗i )
where Δt∗i > 0, t∗ − L∗

−; ≤ ti ≤ t∗.� L∗
+ represents the maximal time to evaluate oncoming

sensor activations. A long-term evaluation will improve
the results. For this reason, in the same way as L∗

−; , with
preceding sensor activations, the results also improved. It
generates a delay in comparison with real-time AR. How-
ever, the results obtained will be more precise. The more
time is spent to evaluate oncoming sensor activations, the
more time is needed to obtain the recognized activity. So,
t+ defines the evaluating time which is defined as the point
of time where the AR evaluates the time t∗. The defini-
tion of oncoming FTWs is determined by Tk (Δt∗i ) where
Δt∗i < 0, t∗ ≤ ti ≤ t+ .

Second, in order to generate multiple and incremental FTWs
from L∗

−; and L∗
+ in a simple manner, the following process is

proposed:� A set of incrementally ordered evaluation times L = {L1 ,
. . . , L|L |}, Li−1 < Li , which define the limits of the trape-
zoidal functions, are calculated according to the temporal
window index Tk = Tk (Δt∗i )[Lk , Lk−1 , Lk−2 , Lk−3 ].� L is defined by the Fibonacci sequence [27] L =
{1, 2, 3, 5, 8, . . .}, which has been previously shown as a

successful sequence for defining FTWs without requiring
expert knowledge definition [26].� L+ and L−; are established from the maximal tempo-
ral size L∗

−; and L∗
+ respectively. In both cases, the

number of FTWs defined by Fibonacci is a set to
the closer value of L∗

−; and L∗
+ in the sequence L.

For example, if L∗
+ = 240m, L+ = {0m, 1m, 1m, 2m,

3m, 5m, . . . , 144m, 240m}.

D. Configuring Sequence Features With FTWs, Time
Segmentation and Labeling

The use of FTWs Tk defines a sequence representation of
preceding and oncoming features for each sensor Si in a given
point of time ti . For evaluation purposes of the AR model,
the activity is estimated for each evaluation time step of the
timeline [17].

So, the timeline T = {min(S0
ij

),max(S+
ij

)} is divided in
time steps t∗ defined by a temporal granularity ΔT where t∗−1 =
t∗ − ΔT, t∗+1 = t∗ + ΔT,∀t∗, which configure the points of
time where the AR is evaluated.

For each evaluated time step t∗ and sensor Si , the preceding
and oncoming FTWs are computed to determine the sequence
features. It is worth noting that the FTW parameters are de-
fined according to distance to the evaluated time t∗, so a sliding
window configuration [28] is developed in the timeline T to
compute the features.

Finally, in order to label each evaluated time step t∗, the
activity Ai is selected, which is developed if and only if ∃t∗ ∈
[A0

ij
, A+

ij
]∀Aij

.

IV. EXPERIMENTAL SETUP AND EVALUATION

A. Data

Data from two real intelligent homes A and B in which partici-
pants perform their daily routine were acquired for this work [4].
These two homes are equipped with sensors that are able to cap-
ture the movements and interactions of the resident. In home A,
9 human daily activities that were performed in 14 days over a
period of 19,932 minutes were described by an incoming stream
of binary events from 12 sensors in the home. In home B, 10
human daily activities that were performed in 22 days over a
period of 30,495 minutes were described by 12 binary sensors.
The timeline of the activities is segmented in time slots using
the window size Δ t=60 s, based on the standard reference from
[8], [17], [24]. The activities of homes A and B are Breakfast,
Grooming, Leaving, Lunch, Showering, Sleeping, Snack, Spare
Time, Toileting; in addition to these, home B has the activity
Dinner.

The leave-one-day-out cross-validation is used for evaluation,
where a single day of the activities is used for the test set and
the rest of the days are used for the training set. This process
is repeated until the data from all the days is involved in the
training set and the testing set [15]. The average F-score is
computed from the results of the cross-validation as done in
[8], [24].
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Fig. 2. Example of preceding and oncoming FTWs L+ = {0, 1, 1, 2, 3} and L−; = {0, 1, 1, 2, 3, 5, 8}. Evaluation time t+ and the evaluated time t∗

in the timeline are shown.

Since the classes of the datasets are imbalanced, the sampling
approach is used by randomly oversampling observations of the
minority class and undersampling observations of the majority
class to have an equal number of samples (5000 samples) for
each class. This allows us to create a more balanced dataset
and avoid having models biased toward one class or the other
[18], [29].

B. Feature Vector

Features are computed by applying 15 FTWs on the raw data
from all 12 binary sensors in each minute for both datasets.
The datasets A and B have 19,932 and 30,495 samples respec-
tively, where each sample represents one minute of data with
12 × 15 = 180 features. The resulting datasets are used for real-
time activity recognition. Feature extraction based on FTWs is
evaluated and compared with Equally-sized (1 minute) temporal
windows (ESTWs) [8] and Raw Last sensor Activation (RAW)
in one-minute windows [26]. Regarding the feature extraction
with delays in time, different delays in time are considered,
which are 5 minutes, 20 minutes, 1 hour, and 4 hours. For ex-
ample, when a 5-minutes delay is used over real time, 4 FTWs
in addition to 15 FTWs are computed, where the 4 FTWs repre-
sent the 5-minute delay in time, hence, the number of features
becomes 12sensors × 19FTWs. For other delays in time, 20
minutes, 1 hour, and 4 hours, the number of features for each
sensor becomes 22, 24, and 27 respectively.

C. Model Selection and Architecture

The models that have been used in this study are described
below.� Long-Short Term Memory (LSTM): a type of recurrent

neural network (RNN) that includes a memory and is des-
ignated to learn from sequence data, such as sequences of
observations over time. LSTM is most widely used in nat-
ural language processing and speech recognition that can
model temporal dependence between observations [30].
LSTM has obtained satisfying results in activity recogni-
tion [31], [32]. Hence, in this study LSTM is designed to
be used in the experiments by stacking a LSTM layer with

40% dropout rate and 0.001 learning rate followed by a
fully-connected, i.e., a dense layer and a soft-max layer.
For all the models in this study the batch size and training
epochs are equal to 10, which is a total of 100 batches
during the entire training process. Commonly, large batch
sizes result in quicker progress in training but mostly do
not always converge as fast. On the other hand, smaller
batch sizes train slower but could converge faster, there-
fore it is mostly an independent problem [33]. Regarding
the 40% dropout, which is a regularization technique for
preventing deep learning models from overfitting [34],
the dropout ignores randomly selected neurons during the
training phase. Those ignored neurons are temporally re-
moved on the forward pass and their weights are not up-
dated on the backward pass.� Convolutional Neural Network (CNN): used in the exper-
iments because CNN is competent in extracting features
from signals. CNN has obtained promising results in im-
age classification, text analysis and speech recognition
[32]. CNN has two advantages for human activity recog-
nition which are local dependency and scale invariance.
Local dependency refers to the nearby observations in hu-
man activity recognition that are likely to be correlated,
while scale invariance means the scale is invariant for dif-
ferent paces or frequencies. CNN can learn hierarchical
data representations which leads to rendering promising
results in human activity recognition [32]. In this study,
a one dimensional (1D) CNN architecture is developed
which can extract local 1D sub-sequences from the se-
quence data. The 1D CNN could be competitive with
RNNs on some sequence-processing applications such as
audio generation and machine translation with a cheaper
computation cost compared to RNN. The model is de-
signed by stacking two convolutional layers with 40%
dropout rate and 0.001 learning rate followed by a max-
pooling layer and followed by a fully-connected, i.e., a
dense layer and a soft-max layer.� Hybrid model: since input sub-sequences are processed by
1D CNN independently, unlike LSTM, the sub-sequences
are not sensitive to the time step order. However, many
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convolution layers and pooling layers could be stacked to
recognize longer-term patterns. This leads to long chunks
of the original inputs to be considered by the upper lay-
ers. Yet this is not a fairly strong way to induce order
sensitivity, when order sensitivity is key to activity recog-
nition, since RNNs for processing very long sequences are
highly expensive, while 1D CNNs are cheap. Hence, de-
signing a hybrid model by combining the speed and light-
ness of CNNs with the order-sensitivity of LSTM consists
in using a 1D CNN as a pre-processing step before an
LSTM. This strategy is particularly important because the
1D CNN turns the long input sequence data into much
shorter sequences of high-level features. The sequence
data of extracted features by 1D CNN then becomes the
input to the LSTM part of the network. The hybrid model
is the combination of two deep learning models, particu-
larly Convolutional neural network and Long-Short Term
Memory (CNN LSTM). CNN LSTM is able to systemati-
cally learn feature representation and model the temporal
tendencies between their activations [24]. The model is
designed by stacking a convolutional layer that was fol-
lowed by a max-pooling layer. Then, a LSTM Layer with
40% dropout rate and 0.001 learning rate is followed by a
fully-connected, i.e., a dense layer and a soft-max layer.

D. Measurement

The following well-known metrics are used to evaluate the
models.� Precision represents the proportion of correct observa-

tions of a class to the entire observations classified as that
class, with high precision indicating low false positives.
Precision is equal to T P

T P +F P :� Sensitivity (recall) shows the proportion of observations
correctly classified as a given class to the actual total
observations in that class calculated using the formula

T P
T P +F N :� F1-score (F1-sc) shows an insight into the balanced
between precision ( T P

T P +F P ) and sensitivity (recall)

( T P
T P +F N ). This metric is also used in Activity recognition

[17].

E. Results and Discussion

In this section, results of different models are shown and dis-
cussed based on different feature extraction approaches. In a
real-time activity recognition scenario, only past sensor data are
considered for each evaluation time. Evaluation time is the time
when the decision-making of each activity has been developed.
Here, two different feature extraction approaches based on sev-
eral machine algorithms have been compared with FTWs. First
approaches described in [4] included an ad-hoc feature vector
with Raw and Last sensor Activation (RLA) within a one-minute
window as a suitable configuration for learning AR with C4.5
and SVM for the homes A and B. Second, we include the results
from approach [8], where equally-sized temporal windows (ES-
TWs) of one minute sensor activation are described as a suitable
feature extraction approach for AR binary sensors with LSTM

and CNN models. Table I shows the results of the F1-score and
training time for real-time recognition of different models based
on extracting features with ESTWs, RLA and FTWs. The train-
ing time is the average of 10 runs of the training model. The
F1-score results of the models based on FTWs are significantly
higher than the results of the models based on ESTWs and RLA.
Therefore, FTWs have been used for this paper as a contribution
to AR research, with different delays in time in addition to real
time to improve the recognition process. To predict what activity
has been performed in a specific time T, different time delays of
oncoming sensors after the time T in addition to the preceding
sensor activations of the time T are included in the feature ex-
traction based on FTWs. For example, now (Evaluation time),
we evaluate what activity was developed 4 hours ago (Evaluated
time). Evaluated time. It is the time which is evaluated by the
classifier to recognize which activity has been developed in this
point of time based on the preceding and oncoming sensor data.
In the case of real time, evaluation time is equal to evaluated
time. In the case of delays in time that consider oncoming sensor
data, evaluation time is higher (delayed) from evaluated time.

In the scenario where the activity recognition is delayed, pre-
ceding sensor activations with different time delays, particularly
5 minutes, 20 minutes, 1 hour, and 4 hours, are tested to im-
prove the recognition process. The results show that delaying
time with LSTM in decision-making leads to building more
accurate models. The results are significantly improved when
considering oncoming sensor activations and increasing delay
in the evaluated time. In house A, for example, the total results
of F1-score of the model in real time is 89.05, while the results
of the model are improved notably, up to 96.44, when consid-
ering oncoming sensor activations. Tables II and III show the
results of the F1-score and training time of LSTM, CNN, and
the hybrid CNN LSTM based on FTWs from home A and B
respectively.

The results indicate that the F1-score of the models improves
substantially by increasing time delays with a slight increase
of training time. This means that delaying the decision-making
of human activity recognition yields better and more accurate
models. In addition to the F1-score, a precision summary of the
models is also shown in Fig. 3 for homes A and B respectively.
The figures show that the precision of the models is increased
when considering oncoming sensor activations over real time.

Finally, the results of the models with 4-hour time delays
are based on extracting features using three approaches. Firstly,
Raw and Last Next Activation (RLNA) for learning AR with
C4.5 and SVM. Secondly, Equally-sized Temporal Windows
(ESTWs) [8] for learning AR with LSTM. Thirdly, Fuzzy Tem-
poral Windows (FTWs) for learning AR with LSTM. Table IV
shows the results of the F1-score and training time of the models
based on extracting features with ESTWs, RLNA and FTWs.
The results indicate that LSTM based on FTWs has obtained
the highest F1-score with suitable and reasonable training time
compared to LSTM based on ESTWs or C4.5 and CVM based
on RLNA.

In summary, the proposed method of this paper has enhanced
the models for recognizing all the activities performed in homes
A and B while maintaining a low time cost. We highlight that
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TABLE I
F1-SCORE AND TRAINING TIME FOR REAL-TIME RECOGNITION OF DIFFERENT MODELS BASED ON EXTRACTING FEATURES WITH EQUAL-SIZED TEMPORAL

WINDOWS (ESTWS), RAW AND LAST ACTIVATION (RLA) AND FUZZY TEMPORAL WINDOWS (FTWS)

TABLE II
F1-SCORE AND TRAINING TIME (MINUTES) OF LSTM, CNN, AND CNN LSTM WITH DIFFERENT DELAYS IN TIME BASED ON FTWS FROM ORDONEZ HOME A

TABLE III
F1-SCORE AND TRAINING TIME (MINUTES) OF LSTM, CNN, AND CNN LSTM WITH DIFFERENT DELAYS IN TIME FROM ORDONEZ HOME B

the proposed model with FTWs and Deep Learning achieves
encouraging performance regarding ad-hoc classical approaches
and sensor representations, as well as previous approaches based
on Deep Learning with Equally-sized temporal windows.

This is particularly so in the activities that real-time models
have difficulty recognizing accurately, such as Leaving, Snack,
Grooming, and Toileting from home A. Regarding home B, the
results of the same activities in addition to Dinner are signif-
icantly improved. This refers to the fact that taking oncoming

sensor activations into account is crucial in order to enhance the
learning process of the models.

Finally, we note the learning time in Deep Learning is in
the magnitude of minutes compared with classical approaches
which develop learning in seconds. However, the evaluation of
Deep Learning under this approach has been developed with
low learning time requirements (10 epochs which take less than
6 minutes). In addition, one limitation of this work is the diffi-
culty in handling interleaved activities due to a single classifier
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Fig. 3. Precision of LSTM, CNN and CNN LSTM for real time and different delays in time.

TABLE IV
F1-SCORE AND TRAINING TIME FROM 4 HOURS DELAYED IN ADDITION TO REAL-TIME RECOGNITION FOR DIFFERENT MODELS WITH EQUAL-SIZED

TEMPORAL WINDOWS (ESTWS), RAW AND LAST NEXT ACTIVATION (RLNA) AND FUZZY TEMPORAL WINDOWS(FTWS)

being developed for learning with multi-class labels. In order
to enable this methodology to support interleaved activities, a
configuration using an ensemble architecture (where each ac-
tivity is represented by a classifier) is necessary [26]; however,
we note that the learning time and learning data size required is
multiplied by the number of classes.

V. CONCLUSION AND FUTURE WORK

Human activity recognition is a highly dynamic and challeng-
ing research field that plays a crucial role in diverse applications
such as health care, elderly care, emergencies, security, smart
environments, surveillance and context-aware-systems. In this
study, we have proposed a new data-driven approach that aims to
increase precision and sensitivity in human activity recognition
applied in a smart home setting. The proposed method considers
the partial oncoming sensor activations in addition to preceding
sensor activations. With the use of oncoming sensor activation,
we can take the benefits of enhancing the learning process that

leads to improved recognition performance compared with the
approaches using only the preceding sensor activations in the
intelligent environment. Multiple and incremental fuzzy tempo-
ral windows were used to extract features from both preceding
and partial oncoming sensor activations. Defining multiple and
incremental fuzzy temporal windows from long-term to short-
term has provided suitable semantics to determine a sequence
of temporal features that boosts learning using LSTM sequence
models and CNN.

Experiments show that precision and sensitivity increase by
magnitudes when using preceding as well as partial oncoming
sensor activations compared to precision and sensitivity when
using only preceding sensor activations. The results of the ex-
periment indicate that the more partial oncoming sensors are
included, the better results are achieved. However, results are
also improved when considering partial oncoming in addition to
preceding sensor activations within a short amount of time, for
example 5 minutes. The proposed approach of this paper has en-
hanced the models for recognizing all the activities performed in
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houses A and B. Particularly the activities that real-time models
have difficulty to recognize accurately such as Leaving, Snack,
Grooming, and Toileting from house A. Regarding house B,
the results of the same activities in addition to Dinner are sig-
nificantly improved. This refers to the fact that taking partial
oncoming sensor activations into account is crucial in order to
enhance the learning process of the models.

Future work will explore the proposed approach in two main
directions. First, we will work on boosting learning over dif-
ferent smart homes aiming to perform robust recognition of
dangerous situations and detect behaviour deviations in order to
enhance elderly-care alert systems. The long-term goal of our
project based on the proposed approach will be key to transfer-
ring knowledge over different smart homes in terms of layout,
resident and sensor configuration. Second, we will integrate
heterogeneous sensors from wearable and location sources us-
ing fuzzy logic and scales in learning AR of patients in smart
homes, which have been previously demonstrated as suitable
fusion representation [35].
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Abstract
Human activity recognition as an engineering tool as well as an active research field has become fundamental to many 
applications in various fields such as health care, smart home monitoring and surveillance. However, delivering sufficiently 
robust activity recognition systems from sensor data recorded in a smart home setting is a challenging task. Moreover, 
human activity datasets are typically highly imbalanced because generally certain activities occur more frequently than oth-
ers. Consequently, it is challenging to train classifiers from imbalanced human activity datasets. Deep learning algorithms 
perform well on balanced datasets, yet their performance cannot be promised on imbalanced datasets. Therefore, we aim to 
address the problem of class imbalance in deep learning for smart home data. We assess it with Activities of Daily Living 
recognition using binary sensors dataset. This paper proposes a data level perspective combined with a temporal window 
technique to handle imbalanced human activities from smart homes in order to make the learning algorithms more sensi-
tive to the minority class. The experimental results indicate that handling imbalanced human activities from the data-level 
outperforms algorithms level and improved the classification performance.

Keywords Activity recognition · Smart home · Imbalanced class

Introduction

By equipping environments such as ordinary homes with 
binary sensors for monitoring resident activities, a vast area 
of different applications is made possible, including smart 
monitoring of energy utilization and assessing resident 
situation and behavior pattern for proactive home care. In 
the case of monitoring for home care, independent living 
solutions have been provided for older adults in their own 
homes by smart home technology to improve and maintain 
the quality of life and care [2, 27, 33]. Smart homes that 

are used for transparently represent how, when and where 
humans perform activities opens up diverse health technol-
ogy applications such as anomaly detection (e.g., falls) or 
tracking progression of diseases or recovery. Activity rec-
ognition (AR) has progressed by the recent advancement of 
machine learning to enhance elderly care alert systems and 
improve assistance in emergency situations from smart home 
data [12]. Another example of an application requiring AR 
includes smart medication reminders [40] which utilize the 
contexts in which to send a reminder. Similar to medication 
reminders is the application of assisting people with cogni-
tive impairments to complete tasks [9]. These applications 
relying on AR would potentially benefit from a more accu-
rate recognition. Moreover, by tracking the characteristics of 
activities related to basic needs and their change over time 
renders a possibility to assess parts of the progression of a 
persons functional ability, which is a focus concept for how 
WHO defines healthy aging. Activities of in-home mobil-
ity as showering, watching TV, cooking, eating, sleeping 
and grooming are therefore of importance to monitor and 
track in order to assess the functional health status of older 
adults. Moreover, the framework of AR using machine learn-
ing methods provides enough mechanisms to detect both 
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ambulatory and postural activities, actions of residents and 
body movements using different multimodal data generated 
by heterogeneous sensors [5, 19, 31].

Not only are human activities highly diverse in the form 
of different sensor activations but the frequency of activities 
themselves is inherently imbalanced and hence accurate AR 
is challenging from a machine learning perspective. Large 
differences in the number of examples for the classes to learn 
can make the machine learning algorithm to put emphasis 
on learning majority classes and thereby partially or com-
pletely neglect minority classes. As an example, cooking 
may occur with a higher frequency than grooming. Another 
more prominent example is the vast difference in the number 
of examples between eating and sleeping where the latter 
occurs with a much higher frequency in datasets collected 
over a long duration. This paper focuses on investigating the 
particularly problematic aspect of learning activities over 
days or even months which are imbalanced.

Despite many past efforts of research on the class imbal-
ance problem and approaches to cope with this general prob-
lem, there is a lack of empirical work on targeting machine 
learning beyond shallow methods [20]. Traditional machine 
learning algorithms such as decision tree, support vector 
machine, naive Bayes and hidden Markov models have been 
used to minimize the recognition error [6, 23]. Satisfying 
recognition results have been achieved by adopting these 
approaches. However, such algorithms may heavily depend 
on classical heuristic and hand-crafted feature extraction 
which might be limited by human domain knowledge [39]. 
A natural variation within each activity is often present in 
collected smart home datasets and is not unlikely to fluctuate 
even more between different residents. These variations are 
also influenced by contextual factors such as time of the day 
and location of where the activity is performed. Given these 
conditions as well as considering the multitude of choices at 
sensor installation (e.g., sensor types and sensor locations), 
AR based on shallow learning where features are hand-
crafted can be challenging. Therefore, discovering more 
systematic methods to obtain features has drawn increasing 
research interests [24]. The influence of deep learning has 
been demonstrated in many areas not only in image classifi-
cation such as speech recognition and natural language pro-
cessing as surveyed in [39]. Consequently, studies of activ-
ity recognition using deep learning have multiplied because 
the number of elderly smart-home healthcare services has 
steadily increased for the last few years and all reporting 
state-of-the-art performances achieved on diverse activ-
ity recognition benchmark datasets [16, 43]. Particularly, 
two methods have brought promising results of AR, long 
short-term memory (LSTM) and convolutional neural net-
works (CNNs) when using data prepared with a fuzzy-based 
approach to represent temporal components of the data [15, 
26, 28]. However, to the best of our knowledge, these two 

machine learning algorithms for AR have not been studied 
from the context of different temporal preprocessing meth-
ods along with traditional methods for handling class imbal-
ance in order to improve recognition accuracy. The study 
described in this paper is therefore designed to fill parts of 
such a knowledge gap and also put a particular focus on the 
classes representing activities with a relatively low num-
ber of observations (i.e., minority classes). Thus, the main 
contribution of this paper is the study of well-known class 
imbalance approaches (synthetic minority over-sampling 
technique, cost-sensitive learning and ensemble learning) 
applied to activity recognition data with various temporal 
data preprocessing for the deep learning models LSTM and 
1D CNN.

The rest of the paper is organized as follows. In Sect. 2, 
related work is described, and in Sect. 3 Methodology, the 
outline and details of the study are described, whereas in 
Sect. 4, experiment results are presented and discussed. 
Finally, the findings and opportunities of further research 
are summarized in Sect. 5, Conclusion and future work.

Related Work

Elements of the class imbalance problem are widely studied, 
especially from a shallow learning perspective. Extensive 
work by [18] outlined three important factors of the prob-
lem: the complexity of concept (or underlying distributions), 
training set size and degree of imbalance. It was shown that 
problems with low concept complexity were insensitive to 
class imbalances but with an increased concept complexity 
the models (C5.0 & MLP) performed poorly, even when a 
low-class imbalance was present. Moreover, Japkowicz and 
Stephen concluded that a severe complex problem could be 
handled with a good performance given a sufficiently large 
amount of training data [18]. Finally, their conclusion that 
over-sampling and cost-modifying methods for improving 
model performance are preferred over an undersampling 
strategy, is a direction explored in this paper for deep learn-
ing models.

The intrinsic property of classes representing human 
activities to be imbalanced makes the topic of AR learn-
ing algorithms for imbalance handling crucial to study, 
especially since the arrival of deep learning which typi-
cally requires a larger dataset. Different strategies for deal-
ing with class imbalance for deep learning were recently 
surveyed by [20]. The survey revealed that the number of 
research studies containing empirical work on targeting 
the class imbalance problem for deep learning is limited. 
However, the same survey showed that classical methods 
for handling imbalance (e.g., random over-sampling of 
minority classes and cost-sensitive target function to avoid 
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skewed learning toward majority classes) applied in deep 
learning situations show promising results.

Most past works on handling class imbalance for deep 
neural networks focus on computer vision tasks where 
image classification dominates the reviewed papers and 
hence not directly translatable to an AR setting. A modi-
fied cost-sensitive learning scheme was proposed by [22] 
with good results compared to standard cost-sensitive 
(when the target function is weighted toward the size or 
importance of classes) approaches and sampling methods 
(where the majority classes are undersampled or minority 
classes are over-sampled). However, the evaluation was 
based on data for image classification tasks. Another novel 
approach (focusing on a vision classification problem) 
combined sampling and a modified hinge loss to render 
tighter constraints between classes for a better discrimi-
native deep representation [17]. The focus of this paper 
is class imbalance handling for activity recognition in a 
deep learning context which has earlier been approached 
by Nguyen et al. who proposed an extension to the ran-
dom over-sampling method SMOTE called BLL-SMOTE 
which improved the classification results drastically [30]. 
However, the study was limited to mobile phone sensors 
which is only a subset of the type of sensors available as 
smart home technology.

Besides handling imbalanced activity classes, the domain 
of activity recognition often needs alignment to the use of 
a carefully selected temporal window size. In the case of 
mobile sensing devices, the use of a temporal window size 
needs a thorough analysis to properly and correctly segment 
the data [4]. Shallow learning schemes such as support vec-
tor machines (SVMs), decision tree or hidden Markov model 
based on the dynamic or sliding windows have previously 
been evaluated [11, 36, 38, 42]. These studies have aimed 
to adjust dynamic or fixed window size to enhance the per-
formance of the classifiers. Binary stream sequence data are 
mostly split into subsequences called windows, where every 
window is related to a broader activity by a sliding window 
technique. Binary sensor data segmentation using only one 
window for deploying HAR cannot provide accurate results 
since the duration of human activities differ and the exact 
boundaries of activities are difficult to specify. Intuitively, 
decreasing the window size has led to increasing the per-
formance of activity recognition in addition to minimizing 
resources and energy needs [4]. It has been found that the 
window size of 60 s extracts satisfactory features for activity 
recognition from smart home [26, 32].

Consequently, thorough comparisons of the use of fixed 
window size and fuzzy temporal windows (of particularly 
one hour) are important to study. The contribution of this 
paper is therefore significant to alleviate the complexity of 
defining the window size and to correctly, easily and rapidly 
recognize real-time imbalanced activities.

Methodology

In this study, aspects of how to approach the class imbal-
ance problem are considered. This section describes the 
relevant key components: window methods for pre-process-
ing, machine learning algorithms used and class imbalance 
strategies.

Methods to Handle Imbalanced Class Problem

The following two methods are used to handle the imbal-
anced class problem in activity recognition from algorithm 
level and data level.

Cost‑Sensitive

Cost-sensitive is one of the commonly used algorithm level 
methods to handle classification problems with imbalanced 
data in machine learning and data mining setting [44]. Cost-
sensitive evaluates the cost associated with misclassifying 
samples. Cost-sensitive is not creating balanced data distri-
bution; rather, this method assigns the training samples of 
different classes with different weights, where the weights 
will be in proportion to the misclassification costs. Then, the 
weighted samples will be fed to learning algorithms [45].

SMOTE

Synthetic minority over-sampling technique (SMOTE) is 
a commonly used data-level method to handle imbalanced 
data and is based on sampling. This method over-samples 
the minority classes by creating synthetic samples rather 
than by over-sampling with replacement [7]. The minor-
ity classes will be over-sampled by selecting each minority 
class sample and generating synthetic observations along the 
line segments joining any/all of the k minority class near-
est neighbor. Neighbors will be randomly chosen from the 
k nearest neighbors depending on the amount of required 
over-sampling. Commonly five nearest neighbors are used 
in practice. For example, if 200% is the amount needed to 
be over-sampled, only two neighbors are selected from the 
five nearest neighbors and one sample will be created in the 
direction of each. Synthetic samples are created by taking 
the difference between the sample and its nearest neigh-
bor. The difference will be multiplied by a random number 
between 0 and 1 and added to the feature vector. This proce-
dure will effectively force the decision region of the minority 
class to become more general. The synthetic samples will be 
generated in a less application-specific manner by operating 
in feature space instead of data space to alleviate the issues 
with class imbalanced distribution. Despite the common use 
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of SMOTE at data level, the method is less studied in deep 
learning contexts nor is it, to the best of our knowledge, 
studied together with the effect of windowing pre-processing 
techniques (described in section 3.3). Thereby, this paper 
aims to explore the potential enhancements of class imbal-
ance approaches (where SMOTE is one of the tested meth-
ods) together with two deep learning models (1D CNN and 
LSTM) and several pre-processing methods described in 
later sections.

Ensemble Techniques

Ensemble techniques combine several based models into 
one single model to enhance prediction and decrease bias 
and variance. The decision of several estimators on a dif-
ferent randomly selected subset of data will be combined to 
improve overall performance [14, 41]. However, commonly 
the subsets of data are not balanced as input to the classi-
fiers in the ensemble. Therefore, the classifiers may favor 
the majority classes and generate a biased model during the 
training phase on the input imbalanced datasets. To over-
come this problem and to reasonably compare the results 
of the ensemble model with the cost-sensitive and SMOTE, 
balanced ensemble learning is used in this study which is 
introduced in [13]. Balanced ensemble learning will first bal-
ance the data and then will combine the decision of multiple 
classifiers to avoid bias and to render better performance. 
Decision trees as the base models with bootstrap aggregation 
(Bagging) are used to build the ensemble learning.

Smart Home Data for Evaluation

We used the activities of daily living (ADLs) for recogni-
tion using binary sensors dataset, which were acquired in 
two real intelligent homes A and B in which residents per-
form their daily routine [32]. These two homes are equipped 
with sensors that are able to capture the movements and 
interactions of the inhabitants. The binary sensors are pas-
sive infrared (PIR) motion detectors to identify movement 
in a specific area, pressure sensors on beds and couches to 
detect the user’s presence, reed switches on cupboards and 
doors to measure open or close status and float sensors in 
the bathroom to measure toilet being flushed or not. The use 
of PIR sensors as well as pressure sensors is limited in their 
ability to capture details compared to other sensors such as 
cameras or accelerometers. However, low-resolution sensors 
such as PIR and pressure sensors may preserve the privacy 
and integrity of residents to a greater extent than for exam-
ple cameras. Table 1 shows details of the two homes with 
information of the resident, number of activities and sensors. 
In home A, 9 human daily activities that were performed 
in 14 days over a period of 19,932 min were described by 
an incoming stream of binary events from 12 sensors in 

the home. In home B, ten human daily activities that were 
performed in 22 days over a period of 30,495 min were 
described by 12 binary sensors. The timeline of the activities 
is segmented in time slots using the window size �t = 1 min . 
The activities of homes A and B that were manually labeled 
are Breakfast, Grooming, Idle, Leaving, Lunch, Showering, 
Sleeping, Snack, Spare Time/TV, Toileting; in addition to 
these, home B has the activity Dinner.

Leave-one-out cross-validation is used and repeated this 
for every day and for both homes. Deep learning models 
(described in the next section) are trained for each home 
since the number of sensors varies and a different user 
resides in each home. Sensors are recorded at one-minute 
interval for 24 h , which totals in 1440 length input in min-
utes for each day. The average F-score is computed from the 
results of the cross-validation. Since the classes of the data-
sets are imbalanced, we propose synthetic minority over-
sampling technique (SMOTE) as input data for the deep 
learning model. This allows us to handle the imbalanced 
activities and avoid having models biased toward one class 
or the other (Table 2). 

Data Pre‑Processing

Multiple and incremental fuzzy temporal windows (FTWs) are 
used to extract features. Each FTW T

k
 is defined by a fuzzy 

set characterized with a membership function, and its shape 
corresponds to a trapezoidal function Tk[l1, l2, l3, l4] . The 

Table 1  Details of recorded 
datasets

Home A Home B

Setting Home Home
Rooms 4 5
Duration 14 days 21 days
Sensors 12 12
Activities 10 11

Table 2  Number of observations for each activity in the datasets

Activity Home A Home B

Spare Time/ TV 8555 8984
Sleeping 7866 10763
Leaving 1664 5268
Idle 1598 3553
Lunch 315 395
Toileting 138 167
Breakfast 120 309
Grooming 98 427
Showering 96 75
Snack 6 408
Dinner – 120
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well-known trapezoidal membership functions are defined by 
a lower limit l1 , an upper limit l4 , a lower support limit l2 and 
an upper support limit l3 . The values of l1, l2, l3, l4 are defined 
by the Fibonacci sequence which was previously shown as 
a successful sequence for defining FTWs without requiring 
expert knowledge definition [15, 25]. Figure 2 shows nine 
windows of FTWs created based on Fibonacci sequence. To 
extract features, the FTWs are slided over sensors activations x 
in every minute according to Eq. (1): Features are computed by 
applying 15 FTWs on the raw data from all 12 binary sensors 
in each minute for both datasets. The datasets A and B have 
19,932 and 30,495 samples, respectively, where each sample 
represents one minute of data with 12 × 15 = 180 features. 
The resulting datasets are used for real-time activity recogni-
tion. Algorithm 1 shows the procedure of computing FTWs. 
Feature extraction based on FTWs is evaluated and compared 
with equally sized (1 min) temporal windows (ESTWs)  [34] 
as shown in Fig. 1.

(1)T
k
(x)[l1, l2, l3, l4] =

⎧
⎪⎪⎨⎪⎪⎩

0 x ≤ l1

(x − l1)∕(l2 − l1) l1 < x < l2

1 l2 ≤ x ≤ l3

(l4 − x)∕(l4 − l3) l3 < x < l4

0 l4 ≤ x

.

Algorithm 1 Extracting Features using FTWs
1: Input: Raw data Home A and B are the input Raw

data
2: FTWs ← Fibonacci FTWs get values from Fibo-

nanci
3: Sensor intervals ← Raw data sensor intervals data
4: for ftw ← FTWs do
5: for sen intv ← Sensor intervals do
6: apply ftw on sen intv
7: end for
8: features ← max(ftw)
9: end for

10: dataset ← features
11: Output: dataset

Algorithm 2 shows the process of handling imbalanced 
class problem where firstly data preprocessed by FTWs or 
ESTWs and then infrequent classes are over-sampled by 
SMOTE to be used as the input data of the models (Fig. 2). 

Fig. 1  Example of temporal segmentation on time series of three sensors by the equally sized temporal window method

Fig. 2  Example of temporal segmentation on sensors time series by the fuzzy incremental temporal windows method
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Algorithm 2 Process of Handling imbalanced Data
1: Input: Raw data input Raw data
2: FTW, ESTW FTW, ESTW to extract features and

build datasets
3: SMOTE ← datasets oversamples infrequent classes
4: LSTM, 1D CNN ← datasets Apply temporal mod-

els

 

Model Selection and Architecture

In this study, we investigate two types of neural networks: 
One is based on LSTM (long short-term memory) and 
another is based on CNN (convolutional neural network). 
The architecture and parameters of the temporal models are 
described in the following.

LSTM

LSTM is the extended form of the recurrent neural network 
(RNN) that is designated to learn from temporal sequential 
pattern data. We expect an LSTM architecture to handle the 
activity timeline of a smart home. LSTM solves the vanish-
ing gradient problem of a simple RNN which cannot learn 
long-term sequences and lose the effect of initial dependen-
cies in the sequence. LSTM is most widely used in natural 
language processing, stock market prediction and speech 
recognition that can model temporal dependence between 
observations  [8]. LSTM has obtained satisfying results in 
activity recognition  [16, 29]. Hence, in this study LSTM 
is used in the experiments by stacking two LSTM layers 
with 40% dropout rate and 0.001 learning rate followed by 
a fully connected, i.e., dense layer and softmax layer. For all 
the models in this study, the batch size and training epochs 
are equal to 10, which is a total of 100 batches during the 
entire training process. While large batch size commonly 
results in faster training, it is unable to converge as fast. On 
the other hand, smaller batch sizes train slower but could 
converge faster; therefore, it is mostly an independent prob-
lem [10]. Regarding the 40% dropout, which is a regulari-
zation technique for preventing deep learning models from 
overfitting  [35], the dropout ignores randomly selected neu-
rons during the training phase. Those ignored neurons are 
temporally removed on the forward pass and their weights 
are not updated on the backward pass (Fig. 3).

1D CNN

Convolutional neural network (CNN) is used in the experi-
ments because it is competent in extracting features from 
signals. CNN has obtained promising results in image clas-
sification, text analysis and speech recognition  [16]. CNN 
has two advantages for human activity recognition which are 
local dependency and scale invariance. Local dependency 
refers to the nearby observations in human activity recogni-
tion that are likely to be correlated, while scale invariance 
means the scale is invariant for different paces or frequen-
cies. CNN can learn hierarchical data representations which 
lead to rendering promising results in human activity rec-
ognition  [16]. In this study, a one-dimensional (1D) CNN 
architecture is used and can extract local 1D subsequences 
from the sequence data. The 1D CNN could be competitive 
with RNN on some sequence-processing applications such 
as audio generation and machine translation with a cheaper 
computation cost compared to RNN [3, 15]. The model is 
designed by stacking two convolutional layers each with 64 
filters, kernel size 3 and stride 1 with 40% dropout rate and 
0.001 learning rate followed by a max-pooling layer and 
followed by a fully connected, i.e., dense layer and softmax 
layer (Fig. 4).

Measure Evaluation

How the classification performance is evaluated plays an 
important role in this study. Without proper measures, no 

Fig. 3  Architecture of LSTM
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deeper insight could be achieved. Traditionally, accuracy 
was commonly used to measure the performance of classi-
fiers. However, for classification with the imbalanced class 
distribution problem, accuracy is no longer a appropriate 
measure since the minority classes have a very little impact 
on the accuracy compared to the majority classes [37]. 
Therefore, in this study, the F1-score is used to evaluate the 
models because the F1-score ( 2 precision×recall

prscecision+recall
 ) shows an 

insight into the balance between sensitivity (recall) ( TP

TP+FN
 ) 

and precision ( TP

TP+FP
 ). This metric is also widely used in 

activity recognition  [15, 21] 

Results and Discussion

In this section, the results of the experiments using LSTM 
and CNN are presented and discussed in the aspect of dif-
ferent methods of handling imbalanced classes and differ-
ent feature extraction approaches. FTWs and ESTWs are 
used to pre-process data and build the datasets for training. 
SMOTE, cost-sensitive and ensemble learning methods are 
used for handling the class imbalance present in the datasets. 
Table 3 shows the results of the F1-score of the LSTM and 
CNN models from the home A for the imbalanced data-
set, with cost-sensitive corrections and minority sampling 

Fig. 4  Architecture of 1D CNN

Table 3  F1-score Home A

Activity FTWs ESTWs

Imbalanced 
data

Cos-Sensitive SMOTE Ensemble Imbalanced 
Data

Cos-Sensitive SMOTE Ensemble

CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Snack 0.00 0.00 0.00 0.00 0.28 0.39 0.00 0.00 0.00 0.00 0.00 0.27 0.42 0.01
Showering 0.36 0.48 0.43 0.47 0.70 0.70 0.51 0.79 0.81 0.82 0.81 0.89 0.89 0.82
Grooming 0.00 0.00 0.00 0.00 0.25 0.28 0.12 0.55 0.53 0.54 0.55 0.56 0.57 0.57
Breakfast 0.61 0.67 0.65 0.68 0.71 0.73 0.38 0.71 0.72 0.76 0.74 0.73 0.77 0.67
Toileting 0.00 0.00 0.00 0.00 0.31 0.37 0.17 0.00 0.00 0.00 0.00 0.28 0.29 0.17
Lunch 0.75 0.80 0.81 0.82 0.80 0.84 0.64 0.81 0.80 0.82 0.85 0.86 0.86 0.81
Leaving 0.76 0.86 0.75 0.83 0.88 0.89 0.83 0.85 0.86 0.86 0.86 0.87 0.87 0.84
Sleeping 0.96 0.96 0.96 0.96 0.92 0.90 0.92 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Spare Time 0.91 0.91 0.90 0.91 0.92 0.93 0.76 0.98 0.98 0.98 0.98 0.99 0.99 0.98
Average 0.44 0.48 0.46 0.47 0.63 0.67 0.48 0.60 0.62 0.62 0.63 0.71 0.73 0.65
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using SMOTE. The F1-score of the minority classes which 
are Breakfast, Grooming, Lunch, Showering, Toileting and 
Snack from the home A are improved using SMOTE based 
on both approaches of extracting features and both models. 
The results also show the majority classes which are Leaving 
and Spare-Time activities (except Sleeping) which are also 
improved based on both approaches of extracting features 
for both models using the SMOTE method. The average 
results of the LSTM and CNN for all activities are improved 
using the SMOTE method based on both FTWs and ESTWs. 
Regarding home B, the F1-score of the minority classes 
(Breakfast, Grooming, Lunch, Showering, Toileting, Snack, 
and Dinner) is considerably improved, which are shown 
in Table 4. Moreover, only the results of the Spare-Time 
as the majority classes are improved based on FTWs. The 
average results of home B indicate that the SMOTE method 
substantially improved the recognition, particularly for the 
minority classes. The F1-scores in Tables 3 and 4 indicate 
that the results of the models based on both feature extrac-
tion approaches using SMOTE are better (higher F1-score) 
than the results of models based on cost-sensitive and class 
imbalanced datasets. Moreover, the F1-score results based 
on SMOTE with ESTWs can be seen to be higher than 
F1-scores based on SMOTE with FTWs from both homes 
of both models on average. Moreover, the obtained results 
based on the SMOTE technique with both feature extraction 
method (FTW and ESTW) and with both temporal models 
(LSTM and CNN) are better than the results obtained by bal-
anced ensemble learning as shown in Tables 3 and 4. There-
fore, the proposed data-level solution (SMOTE and ESTWs) 
to handle imbalanced human activities from smart homes is 
more promising than algorithms level (cost-sensitive and 
ensemble learning).

Conclusion and Future Work

Human activity recognition is a dynamic and challenging 
research area that plays an important role in diverse appli-
cations such as smart environments, security, health care, 
elderly care, emergencies, surveillance and context-aware 
systems. The frequency and duration of human activities are 
intrinsically imbalanced. The huge difference in the num-
ber of observations for the classes to learn will make many 
machine learning algorithms to focus on the classification of 
the majority examples due to its increased prior probability 
while ignoring or misclassifying minority examples. In this 
study, SMOTE and cost-sensitive learning are applied to 
temporal models and compared with ensemble learning to 
handle the class imbalance problem as well as to study the 
relation to two data pre-processing methods. Experiments 
show that f-measures of the minority classes are increased 
when using SMOTE with both temporal models (LSTM and 
CNN) and based on both ways of extracting features (FTWs 
and ESTWs). For example, the recognition measurement of 
the Snack and Dinner as one of the minority classes is nota-
bly improved in both homes, using both models and based 
on both feature extraction methods. The experimental results 
indicate that handling imbalanced data is more important 
than selecting machine learning algorithms and improves 
classification performance. Moreover, handling imbalanced 
class problem from data level using SMOTE and ESTWs 
for these activity datasets outperforms the algorithm level.

Future work will explore a newly proposed approach to 
handle the imbalanced class problem by integrating SMOTE 
with weak supervision. This approach will use SMOTE 
only to generate observations from minority classes and use 
weak supervision to correctly and properly label the new 

Table 4  F1-score Home B

Activity FTWs ESTWs

Imbalanced 
data

Cos-Sensitive SMOTE Ensemble Imbalanced 
data

Cos-Sensitive SMOTE Ensemble

CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM CNN LSTM

Dinner 0.00 0.00 0.00 0.00 0.31 0.34 0.06 0.00 0.01 0.00 0.00 0.26 0.27 0.13
Snack 0.00 0.00 0.02 0.08 0.27 0.29 0.22 0.00 0.00 0.00 0.00 0.26 0.28 0.07
Showering 0.0 0 0.22 0.00 0.21 0.26 0.36 0.24 0.73 0.80 0.71 0.79 0.82 0.84 0.53
Grooming 0.13 0.30 0.09 0.30 0.39 0.36 0.42 0.62 0.61 0.61 0.61 0.64 0.65 0.54
Breakfast 0.50 0.47 0.51 0.51 0.52 0.58 0.36 0.26 0.23 0.24 0.19 0.30 0.35 0.29
Toileting 0.00 0.00 0.00 0.00 0.31 0.32 0.32 0.23 0.04 0.23 0.10 0.26 0.27 0.14
Lunch 0.39 0.35 0.31 0.38 0.41 0.42 0.37 0.00 0.00 0.00 0.00 0.36 0.38 0.00
Leaving 0.90 0.90 0.89 0.89 0.90 0.90 0.84 0.66 0.66 0.66 0.66 0.66 0.66 0.66
Sleeping 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
Spare Time 0.83 0.82 0.84 0.84 0.85 0.86 0.79 0.90 0.90 0.90 0.90 0.89 0.90 0.90
Average 0.33 0.36 0.36 0.41 0.51 0.54 0.45 0.40 0.40 0.40 0.40 0.54 0.56 0.42



SN Computer Science           (2020) 1:204  Page 9 of 10   204 

SN Computer Science

observations. The idea is designed to target the challenge of 
correctly labeling samples created in an over-sampling con-
text. The long-term goal of our project will work on boost-
ing learning across different smart homes aiming to per-
form robust recognition of dangerous situations and detect 
behavior deviations in order to enhance elderly care alert 
systems. This will be conducted by transferring knowledge 
over different smart homes in terms of layout, resident and 
sensor configuration.
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